Характеристики корпусов системных блоков. Типы (форм-фактор) компьютерных корпусов Корпус пк и вентиляторы назначение

В этой статье мы рассмотрим из чего состоит системный блок .

Поехали!

Итак, все комплектующие системного блока компьютера, можно условно разделить на две категории.

Первая из них, включает то, без чего ПК вообще работать не будет:

  • Корпус.
  • Жёсткий диск.
  • Процессор.
  • Блок питания.
  • Материнская плата.
  • Система охлаждения.
  • Оперативная память.
  • Видеокарта.
  • Привод оптических дисков (CD , DVD , BluRay ).
  • Картридер.
  • TV -карта.
  • Аудиокарта.
  • Спутниковая карта.

Главные комплектующие из которых состоит системник

Корпус. Предназначен для компактного расположения и фиксации всех остальных комплектующих ПК. Иногда поставляются сразу со встроенным блоком питания. Выпускаются несколько стандартов (ATX), описывающих допустимые размеры материнских плат и блоков питания, которые можно установить в данных корпус. Могут иметь встроенные порты:

USB.
Аудио (miniJack).
eSATA.
IEEE 1394.

Жёсткий диск. Это устройство с энергонезависимой памятью, для хранения информации. Для ПК почти всегда используются винчестеры, форм-фактора 3,5?? и скоростью вращения 7200 об/мин. Существуют три вида жёстких дисков:

  • HDD. Самые шумные, но самые дешёвые. По скорости запись/чтение на третьем месте. В случае выхода из строя, данные можно восстановить. Боятся ударных нагрузок. Ресурс практически не ограничен.
  • SSD. Бесшумные, не боятся ударов и падений, максимально возможное быстродействие. При поломке, данные восстановить невозможно. Ресурс ограничен. Самые дорогие.
  • H-HDD. Малораспространённая разновидность винчестеров. Это гибрид из двух вышеописанных моделей. Основная память на HDD + 1,5-2% от общего объёма на SSD.

В один системный блок можно устанавливать несколько жёстких дисков. Некоторые материнские платы позволяют формировать из них RAID массивы.

Процессор. Набор интегральных схем, расположенных на одном модуле. В нём происходят все вычислительные процессы.
От быстродействия процессора, зависит быстродействие ПК. Все современные процессоры многоядерные. У каждого есть Кэш. Это своеобразная оперативная память процессора. Она подразделяется на три уровня – L1, L2, L3.

Блок питания. Подбирается с учётом корпуса, материнской платы и мощности. Имеет определённое количество коннекторов для подключения комплектующих системного блока.

Материнская плата. Устройство для сопряжения всех комплектующих ПК. Её выбор определяет тип процессора и оперативной памяти. Почти все материнские платы имеют интегрированные аудио- и видеокарты. Их возможностей с избытком хватает для просмотра фильмов, прослушивания музыки и даже для несложных игр. Конфигурацию материнской платы характеризуют:

Контроллеры портов USB3.0 и 2.0
Порты PCI Express и порты PSI.
Сетевой контроллер.
Каналы для подключения устройств с интерфейсом SATA.
Количество слотов для модулей оперативной памяти.

Система охлаждения. Кулер и радиатор. Минимальное количество в одном системном блоке – 2 шт. Один монтируется на процессор, второй, на блок питания. 96% шума системного блока, производят кулеры системы охлаждения. Некоторые процессоры продаются сразу, с кулером и радиатором, в этом случае они имеют приставку в названии «BOX». Есть малораспространённая водяная система охлаждения. Она в 3-3,5 раза дороже, но зато работает бесшумно.

Оперативная память. Это набор микросхем, в которых хранятся данные, необходимые для работы ПК на текущий момент. Устанавливаются в специальные гнёзда на материнской плате. На некоторых платах можно устанавливать сразу до 4 планок . Очень важно, чтобы все модули были из одной партии . Тактовая частота (Скорость обмена информацией с процессором) и объём оперативной памяти, напрямую влияют на быстродействие ПК. При выключении системного блока, все данные из оперативной памяти удаляются.

Второстепенные элементы из которых состоит системник

Из всего списка второй части, в системном блоке крайне желательно иметь видеокарту и привод, а остальные менее важны:

Видеокарта , нужна для игр и работы со сложными программами редактирования видеофайлов. Устанавливается на все производительные компьютеры, но для обычного пользователя, для которого в первую очередь важны социальные сети, скайп и тому подобное, она в общем-то и не важна. Но без установки видеокарты главный процессор компьютера должен быть со встроенным графическим ядром.

Привод оптических дисков. Из трёх видов:

  • CD привод. Устаревший стандарт.
  • DVD привод. Самый распространённый вариант.
  • Blu-Ray привод. Более совершенный вид. Но достаточно дорогой.

Остальные комплектующие системного блока, не играют существенной роли для среднестатистического пользователя, и имеют узкую специализацию. Например:

Картридер. Устройство, позволяющее подключать к системному блоку карты памяти.

Аудиокарта , требуется для создания эффекта окружающего звука 7.1.

ТВ карта (ТВ тюнер), позволяет просматривать и записывать телевизионные программы.

Спутниковая карта , обрабатывает сигнал, принимаемый спутниковой тарелкой.

Теперь вы полностью знаете из чего состоит системный блок компьютера и легко можете дать точное определение для любого из комплектующих : видеокарте, процессору, жесткому диску, оперативке и так далее.

Казалось бы, что может быть проще выбора корпуса для ПК, ведь это не процессор или видеокарта, влияющие на производительность системы. Однако именно неправильно подобранный корпус и становится проблемой для многих пользователей в плане производительности всех комплектующих в системном блоке. Из данной статьи читатель узнает, какие виды корпусов бывают, как правильно выбрать из ассортимента на рынке и каким производителям стоит отдать предпочтение при покупке.

Планирование размещения корпуса для ПК

В первую очередь нужно подумать об установке системного блока на рабочем месте пользователя - где корпус будет стоять. Размещений не так уж и много: на столе, под столом или возле рабочего места. Отсюда и требования к габаритам устройства, его весу и формфактору. Не все покупатели знают, что производители корпусов для ПК выпускают свои продукты как для вертикальной установки, так и для горизонтального расположения для удобства пользователей.

Также немаловажным фактором планирования размещения системного блока является наличие притока свежего воздуха в помещении. При плохом отводе тепла и установке ниже уровня рабочего стола рекомендуется приобретение вертикально устанавливаемого системного блока. Если нужно компактное устройство, и вентиляция в помещении присутствует, то предпочтение лучше отдать системному блоку с горизонтальным расположением - установить его можно под монитор или возле него.

Формфактор корпусов

На рынке компьютерных покупатель может запутаться, если столкнётся с выбором формфактора устройства. Множество аббревиатур, разница между которыми на внешний вид не имеет особого различия. Чтобы было проще сориентироваться, профессионалы рекомендуют использовать всего три термина, на которые уже сами продавцы будут ориентироваться при покупке:

  • мини-корпус - компактные размеры позволяют устройству не занимать много места, а лёгкий вес дает возможность транспортировать системный блок без особых усилий (в аналогии - огромный ноутбук);
  • обычный корпус - большинство системных блоков на рынке (около 90%) имеют стандартные размеры корпуса для ПК (180x410x385 мм);
  • башенный корпус - на базе дорогостоящих системных блоков этого типа реализованы все игровые решения для покупателей, ведь удобство монтажа и достойная вентиляция всегда будут на первом месте.

Комплектация блоком питания

Существуют убеждения, что все корпуса для ПК, поставляемые с блоками питания в комплекте, относятся к продуктам широкого потребления. Отчасти это правда, ведь большинству производителей бюджетных устройств выгодно заработать на продаже двух устройств, нежели на чём-то одном. Однако известные мировые бренды, ориентируясь на требования пользователей, нередко снабжают дорогие корпуса мощными блоками питания. Естественно, цена таких решений на порядок выше продукции широкого потребления.

В данной ситуации всё-таки ИТ-специалистами рекомендуется отдавать предпочтение покупке корпуса и блока питания по отдельности. Расчёт мощности БП должен осуществляться исходя из суммарного потребления электроэнергии всех установленных комплектующих, а не наоборот. К тому же на рынке компьютеров всегда расчёт мощности производится с запасом (на 30% минимум).

Производители дорогих корпусов для ПК

Понятно, что все покупатели желают отдать предпочтение известному бренду, однако зачастую за имя производителя приходится немало доплачивать. И если речь идёт о рекомендациях, то стоит присмотреться к следующим брендам на компьютерном рынке:

  1. Zalman. Компания известна пользователям своими решениями в области систем охлаждения, поэтому нет сомнений, что производитель обеспечит свой продукт достойной вентиляцией. Выбор корпуса для ПК из всей линейки компании будет лучшей покупкой для будущего владельца.
  2. Thermaltake. Самый дорогой представитель американского производителя отличается от конкурентов узнаваемым дизайном. В основном все решения компании реализованы в виде башенных корпусов, предназначенных для оверлокеров: много свободного места внутри, отличная вентиляция и внешняя привлекательность находят в любой точке планеты своих покупателей.
  3. Aerocool, Chieftec, Gigabyte, Fractal Design. Данные производители изготавливают достойные корпуса для ПК. Но их стремление покорить все ниши смущает многих потенциальных покупателей. Если вопрос цены в приоритете, то стоит присмотреться именно к этим брендам.

Дешёвый класс системных блоков

Для устройств бюджетного класса главным критерием является качество сборки. Внимание нужно обратить на материал изготовления. В большинстве случаев производитель для снижения себестоимости использует очень тонкий металл, который наряду с низкой прочностью имеет острые кромки на стыках, из-за чего многие пользователи могут порезать себе руки при монтаже комплектующих. Лучшие корпуса для ПК из бюджетного класса предлагаются без блока питания в комплекте.

Однако именно недорогие решения и привлекают многих покупателей, ведь производители, пытаясь выделится на рынке, обеспечивают свои решения дополнительным функционалом: жидкокристаллические дисплеи, картридеры, яркая неоновая подсветка и множество других функций, способных привлечь внимание к продукту. Тут уже покупателю решать, что для него важнее: качество или цена.

Развитие направления моддинг

Многие владельцы персональных компьютеров, пытаясь выделиться среди сверстников, предпочитают изготавливать корпус для ПК своими руками. Для этих целей приобретается специальное устройство под названием дремель (Dremel), которым и осуществляется видоизменение системного блока. Главным достоинством такого усовершенствования является изготовление корпуса под определённые нужды пользователя с минимальными затратами. Купив самое дешёвое на рынке устройство, можно на его платформе создать настоящий шедевр, который своим функционалом и удобством использования способен конкурировать с элитными корпусами.

Естественно, наличия металлообрабатывающего инструмента для этих целей недостаточно. Нужно иметь дизайнерские навыки и познания в области компьютерных технологий. Для обеспечения достойной вентиляции внутри корпуса рекомендуется вырезать окна на крышке системного блока для установки дополнительных кулеров. Придать красивый вид поможет светящаяся Главное - не забывать основное правило моддинга: нельзя нарушать целостность каркаса несущей части конструкции.

Корпус с нуля своими руками

Людей, создающих с нуля корпус для ПК своими руками, достаточно много. Однако лишь единицы задумываются, почему производители изготавливают системные блоки из стали или алюминия, ведь пластик значительно дешевле. Всё дело в статическом напряжении, которое имеет каждый компонент, установленный в корпус - лишний ток забирает на себя металлический каркас устройства, чего не сделает пластик или дерево.

И если у пользователя появилась мысль создать корпус своими руками, то необходимо позаботиться о создании металлического контура внутри устройства, ещё его называют массой. Перед тем как сделать корпус для ПК, нужно тщательно рассчитать размеры несущей конструкции, создать блоки для установки комплектующих и объединить все элементы в один электрический контур. Иначе все устройства внутри системного блока могут попросту сгореть.

В заключение

В итоге получается, что перед тем, как выбрать корпус для ПК, потенциальному покупателю необходимо сначала определиться с ценой. Следующим шагом являются требования к производительности системы: требует достойного охлаждения, а для офисного ПК в приоритете компактность. Людям, желающим создать корпус своими руками, однозначно понадобятся знания физики и специальный инструмент по обработке металла. Выбор, как всегда, за пользователем, однако не стоит забывать, что стоимость установленных внутрь системного блока комплектующих значительно выше цены корпуса, соответственно, все видоизменения несущего устройства пропорционально влияют на дорогостоящее оборудование.

3. Основные характеристики системного блока

Наиболее "весомой" частью любого компьютера является системный блок (иногда его называют компьютером, что является недопустимой ошибкой). Внутри него расположены блок питания, плата с центральным процессором (ЦП), видеоадаптер, жесткий диск, дисководы гибких дисков и другие устройства ввода / вывода информации. Зачастую видеоадаптер и контроллеры ввода/ вывода размещены прямо на плате ЦП. В системном блоке могут размещаться средства мультимедиа: звуковая плата и устройство чтения оптических дисков - CD-ROM.

4. Основные характеристики монитора

Со времени использования монитора для наглядного вывода данных произошло большое конструктивное усовершенствование его функций. Если сначала в качестве монитора использовалась электронно-лучевая трубка обычного телевизионного приемника, то в дальнейшем требования к нему увеличились. В частности, в монохромном стандарте MDA разрешающая способность составляла 720x350 пикселей. В следующем, цветном стандарте CGA, созданном в 1982 году - 640x200 пикселей, EGA 1984 года - 640x350, VGA 1987 года - 640x480, SVGA - 800x600. Сейчас стандартные возможности монитора - 1024x768 при 32-битном представлении цвета, возможно дальнейшее распространение разрешения 1280x1024 пикселей. Это позволяет использовать при изображении документов режим WYSIWYG - режим полного соответствия, то есть изображение на экране представляется идентично тому, что в конечном итоге появится на принтере.

Система дисплея состоит из двух частей: адаптера дисплея и самого монитора. Адаптеры монитора разделяют по поддерживаемому стандарту (EGA, VGA, SVGA), ширине шины (8-битная, 16-ти или более), частоте кадров, частоте строк могут использоваться с графическими сопроцессорами, объему используемых микросхем памяти (до 4 Мбайт и более). Дисплеи различаются по разрешающей способности, шагу точек в линии, частоты развертки, типу развертки (полная или чересстрочная), размеру экрана. Адаптер непрерывно сканирует видеопамять, формирует ТВ-сигнал, который подается в монитор.

После получения копии содержимого видеопамяти эти данные встраиваются в ТВ- сигнал. ТВ-сигнал, в котором закодировано содержимое видеопамяти, выводится по кабелю в монитор. Монитор обрабатывает ТВ-сигнал с данными из видеопамяти и показывает их на экране.

5. Основные характеристики типового периферийного оборудования

Периферийные устройства персонального компьютера подключаются к его интерфейсам и предназначены для выполнения вспомогательных операций. Благодаря им компьютерная система приобретает гибкость и универсальность.

По назначению периферийные устройства можно подразделить на:

o Устройства ввода данных;

o Устройства вывода данных;

o Устройства хранения данных;

o Устройства обмена данными.

Типовое периферийное оборудование должно отвечать простейшим требованиям пользователя.


6. Характеристики (тип разъема, количество контактов, скорость передачи данных) разъемов

· Видеоадаптера

Первоначально видеоадаптер имел всего один разъём VGA (15-контактный D-Sub). В настоящее время платы оснащают одним или двумя разъёмами DVI или HDMI, либо Display Port. Порты D-SUB, DVI и HDMI являются эволюционными стадиями развития стандарта передачи видеосигнала, поэтому для соединения устройств с этими типами портов возможно использование переходников. Dispay Port позволяет подключать до четырёх устройств, в том числе акустические системы, USB-концентраторы и иные устройства ввода-вывода. На видеокарте также возможно размещение композитных и S-Video видеовыходов и видеовходов (обозначаются, как ViVo)

Текстурная и пиксельная скорость заполнения, измеряется в млн. пикселей в секунду, показывает количество выводимой информации в единицу времени.

· Последовательных портов

Стандартный последовательный порт RS–232C имеет форму 25–контактного разъема типа D.

Интерфейс RS–232C является наиболее широко распространенной стандартной последовательной связью между микрокомпьютерами и периферийными устройствами. Интерфейс, определенный стандартом Ассоциации электронной промышленности (EIA), подразумевает наличие оборудования двух видов: терминального DTE и связного DCE.

Существуют специальные микросхемы ввода и вывода, решающие проблемы преобразования, описанные выше. Вот список наиболее типичных сигналов таких микросхем:

D0–D7 - входные–выходные линии данных, подключаемые непосредственно к шине процессора;

RXD - принимаемые данные (входные последовательные данные);

TXD - передаваемые данные (выходные последовательные данные);

CTS - сброс передачи. На этой линии периферийное устройство формирует сигнал низкого уровня, когда оно готово воспринимать информацию от процессора;

RTS - запрос передачи. На эту линию микропроцессорная система выдает сигнал низкого уровня, когда она намерена передавать данные в периферийное устройство.

Все сигналы программируемых микросхем последовательного ввода–вывода ТТЛ–совместимы. Эти сигналы рассчитаны только на очень короткие линии связи. Для последовательной передачи данных на значительные расстояния требуются дополнительные буферы и преобразователи уровней, включаемые между микросхемами последовательного ввода–вывода и линией связи.

· Параллельного порта

Порт параллельного интерфейса был введен в PC для подключения принтера -LP"T-порт (Line PrinTer - построчный принтер).

Адаптер параллельного интерфейса представляет собой набор регистров, расположенных в пространстве ввода/вывода. Регистры порта адресуются относительно базового адреса порта, стандартными значениями которого являются 386h, 378h и 278h. Порт имеет внешнюю 8-битную шину данных, 5-битную шину сигналов состояния и 4-битную шину управляющих сигналов.

BIOS поддерживает до четырех LPT-портов (LPT1-LPT4) своим сервисом - прерыванием INT 17h, обеспечивающим через них связь с принтерами по интерфейсу Centronics. Этим сервисом BIOS осуществляет вывод символа, инициализацию интерфейса и принтера, а также опрос состояния принтера.

Традиционный порт SPP (Standard Parallel Port) является однонаправленным портом, на базе которого программно реализуется протокол обмена Centronics. Порт обеспечивает возможность вырабатывания запроса аппаратного прерывания по импульсу на входе АСК#. Сигналы порта выводятся на разъем DB-25S (розетка), установленный непосредственно на плате адаптера (или системной плате) или соединяемый с ней плоским шлейфом. Название и назначение сигналов разъема порта (табл. 2) соответствуют интерфейсу Centronics.

Недостатки стандартного порта частично устраняют новые типы портов, появившихся в компьютерах семейства PS/2.

Двунаправленный порт 1 (Typel parallel port) - интерфейс, введенный с PS/2. Такой порт кроме стандартного режима может работать в режиме ввода или двунаправленном. Протокол обмена формируется программно, а для указания направления передачи в регистр управления порта введен специальный бит: при CR.5=0 буфер данных работает на вывод, при CR.5=1 - на ввод.

Порт с прямым доступом к памяти (Type 3 DMA parallel port) применялся в PS/2 моделей 57, 90, 95. Этот тип был введен для повышения пропускной способности и разгрузки процессора при выводе на принтер. Программе, работающей с данным портом, требовалось только задать блок данных в памяти, подлежащих выводу, и вывод по протоколу Centronics производился без участия процессора.

пропускная способность: высокая до 12 Мбит/с, низкая – 1.5 Мбит/с

наибольшая допустимая длина кабеля для высокой скорости: до 3 м

длина кабеля для низкой пропускной способности: 5 м

максимально допустимое количество устройств (включая размножители): 127

поддерживается способность подключения устройств с разными скоростями обмена

передаваемое напряжение для периферии: 5 В

максимальный потребляемый ток для одного устройства: 500 мА

Фактически USB 2.0 не имеет различий с USB 1.1 кроме существенно большей скорости передачи данных и небольших изменений в протоколе для высокоскоростного режима Hi-speed.

На сегодняшний день существуют три скорости работы устройств USB 2.0:

Low-speed 10-1500 Кбит/с (используется для клавиатуры, мыши, джойстика и пр.)

Full-speed 0,5-12 Мбит/с (аудио/видео устройства)

Hi-speed 25-480 Мбит/с (видео устройства, устройства хранения информации).

Хотя в теории скорость шины USB 2.0 способна достичь 480 Мбит/с, на практике устройства не достигают такой скорости обмена, хотя и могут развивать её. Это объясняется достаточно большими задержками шины USB между запросом на передачу и началом передачи.

· Питания монитора

В настоящее время многие видеокарты оснащены и портом VGA (Video Graphics Array - графическая видеоматрица), и портом DVI (Digital Video Interface - цифровой видеоинтерфейс), что позволяет подключать как ЭЛТ, так и ЖК-мониторы. В то же время некоторые ЖК-мониторы могут быть подключены как через порт DVI (оптимальный вариант), так и через порт VGA (за неимением порта DVI. К сожалению, поскольку в течение нескольких лет не было единого стандарта для передачи сигналов ЖК-мониторам, порты для подключения этих мониторов периодически изменялись. Далее приведено краткое описание разъемов, с которыми вы столкнетесь при выборе нового ЖК-монитора. Адаптеры служат только для установки соединения между штекером монитора и гнездом порта. Они никак не преобразуют сигналы, которые через них проходят. Цифровые сигналы могут быть восприняты лишь цифровыми мониторами, а аналоговые - только аналоговыми. Мониторы, рассчитанные на получение исключительно цифровых сигналов, не будут рабе тать после подсоединения их через аналоговый порт, даже через адаптер. DVI-D, DFP. Эти порты и штекеры рассчитаны на передачу только цифровых сигналов. DVI-A, VGA. Эти порты и штекеры рассчитаны на передачу только аналоговых сигналов. DVI-T. Многофункциональный порт, который способен передавать ЖК-мониторам как цифровые, т не и аналоговые сигналы. Однако далеко не все видеокарты могут генерировать сигналы обоих типов. Ознакомьтесь внимательно с характеристиками видеокарты и уточните, передает ли она через порт DVI-I аналоговые, цифровые или же те и другие сигналы. Только так вы сможете узнать, какой монитор совместим с этой видеокартой. Штекеры DVI могут иметься как у аналоговых, так и у цифровых ЖК-мониторов. Одинарное соединение. В таких штекерах DVI посредине расположены несколько рядов штырьков. Они обеспечивают максимальное цифровое разрешение 1280 х 1)24 пикселов. Это то же разрешение, что оговаривается стандартом HDTV (Hign Definition TV -- телевидение высокой четкости). В настоящее время почти все штекеры DVI пропускают данные через одинарное соединение. Двойное соединение. Такие штекеры DVI имеют полный набор штырьков, что позволяет им обеспечивать разрешение, равное 2048 х 1536. (Это стандарт QXGA, поддерживающий большее разрешение, чем стандарт HDTV.) Мониторы с такими штекерами встр;чаются пока довольно редко. Установка монитора Убедитесь, что монитор соответствует вашей видеокарте. Плоский ЖК-монитор, который умеет принимать как аналоговые, так и цифровые сигналы, может быть подключен к наибольшему количеству видеокарт. Соответственно, через видеокарту, оснащенную и портом VGA, и аналого-цифровым портом DVI-I, может быть подключено наибольшее количество мониторов. Столкнулись с тем, что разъемы ЖК-монитора и видеокарты не соответствуют друг другу?

Наверное, чтобы ввести клиентов в заблуждение, некоторые производители указывают, что их мониторы имеют 15-штырьковый разъем D-BUS (15-pin mini t>BUS). На сам)м деле это означает, что монитор может быть подключен к обычному порту VGA, присутствующему практически на любой видеокарте. Самые заядлые поклонники компьютерных игр могут приобрести видеокарту с портом VidfeoOut, позволяющую подключать домашний кинотеатр. Хотя в настоящее время размер большинства дисплеев равен 15 или 17 дюймам, серьезные пользователи позволяют себе мониторы с размером экрана 21 дюйм и более. Если ваша видеокарта сопряжена с телевизионным тюнером, вам определенно нужен монитор с большим экраном для получения максимального удовольствия от просмотра телепрограмм.

1. Чтобы подключить монитор, выполните следующие действия:

1. Достаньте монитор из упаковки. Некоторые мониторы поставляются с несколькими кабелями и адаптерами для возможности подключения их к различным видеокартам.

2. Разместите монитор на столе и подсоедините его штекер к соответствующему порту. Если разъемы не подходят, значит, вы либо купили не тот монитор, либо пытаетесь подсоединить его не к той карте.

3. Подключите кабель к компьютеру и убедитесь, что он надежно закреплен со стороны монитора. Большая часть мониторов устанавливается на гарнирной подставке. В этом случае дайте кабелям небольшую слабину. В противном случае, даже слегка повернув монитор, вы можете выдернуть кабель из гнезда.


Работе в СКА - Бесплатно Обучение работе в сети Интернет (час) 10 Бесплатно 10 10 10 Прежде чем перейти к расчету показателей эффективности внедрения автоматизированной информационной системы в офисе туристской компании, сформулируем выводы по проектной части данной дипломной работы. 1. Задачей предварительного моделирования предстоящих этапов внедрения информационных технологий на...

Каждому элементу соответствует численный и символьный идентификатор. В имя переменной включается полный путь до нее от корневого элемента root. 3. Система мониторинга и администрирования 3.1 Системы управления технологическим сегментом магистральной цифровой сети связи ОАО «РЖД» РФ При построении современных цифровых сетей следует различать следующие сетевые уровни: уровень первичной...

Привет друзья! В сегодняшней статье мы расскажем, как правильно выбрать корпус для вашего ПК, ведь в персональном компьютере важно буквально всё, в том числе и металлическая коробка, в которой находятся комплектующие.

За последние двадцать лет я перевидел очень много компьютерных корпусов и могу с уверенностью сказать, что 99% пользователей при покупке готового компьютера не уделяют должного внимания корпусу и выбирают его из-за понравившегося дизайна (стильного внешнего вида), не учитывая возможности вентиляции, расположения блока питания (сверху или снизу), расположения кнопки POWER и USB-портов на передней панели, и других важных нюансов .

А те пользователи, которые хотят сэкономить и заказывают на свой выбор, часто даже предварительно не смотрят, в какой корпус им будут устанавливать выбранные компоненты , выбирая самый дешёвый .

Уже в первый день использования ПК, человек, купивший компьютер, начинает отмечать некоторые неудобства, например, чтобы включить системник нужно нагнуться, так как кнопка включения находится в нижней части передней панели, тоже самое касается USB-портов, нужно постоянно гнуть спину для подсоединения или отсоединения флешки. Более серьёзные проблемы начинаются уже в процессе эксплуатации ПК - перегрев и ранний выход комплектующих из строя по причинам неправильной эргономики выбранного корпуса ПК.

В последнее время всё больше наших читателей начинают , в первую очередь уделяя много внимания выбору и видеокарты , а вот металлическую коробку откладывают на последнее место, и покупают как можно дешевле, так как считают, что корпус мало на что влияет, но это в корне неверно! Да, оболочку для компьютерной начинки я выбираю тоже в самом конце, но экономить на ней вовсе не стоит. А о том почему, я и хочу вам рассказать. Так же мы поговорим о всевозможных видах, типах и характеристиках компьютерных корпусов.

Размер корпуса

Итак, первое, на что стоит обращать внимание при выборе корпуса, это размер. Вся внутренняя начинка должна влезать без каких-либо проблем. Для этого, необходимо перейти на сайт производителя и посмотреть совместимость по размерам с другими комплектующими.

Форм-фактор материнской платы должен соответствовать форм-фактору корпуса, либо может быть меньше. Но ни в коем случае материнка не должна быть больше формата поддерживаемого вашим корпусом.

К примеру, в корпус Micro-ATX можно будет поставить только mini-ITX и Micro-ATX, но вот ATX уже не влезет. Далее, обязательно смотрите на размеры блока питания, высоту процессорного кулера и длину видеокарты. На сайтах производителей вы 100% найдете необходимую информацию.

Система охлаждения

После того, как мы определились с размерами, необходимо в обязательном порядке смотреть на встроенные и потенциально возможные системы охлаждения. Лично для меня, это самый главный параметр при выборе металлической коробки. Так как, от продуваемости корпуса зависит температура внутренних компонентов системы. А от температуры, как вам всем известно, напрямую зависит производительность и ресурс работы всех комплектующих. Независимо от размеров любой корпус должен иметь минимум 2 встроенных вентилятора, один на вдув холодного воздуха в систему, другой на выдув горячего потока изнутри системы. Кулер на вдув располагается снизу у ячеек для жестких дисков. А кулер на выдув – сверху, около процессорного кулера. Такое расположение напрямую связано с физикой – горячий воздух всегда поднимается наверх.

Существуют корпуса имеющие дополнительные кулеры снизу и сверху. Это обеспечивает дополнительный вертикальный поток воздуха, положительно влияющий на температуру внутри коробки.

Но стоит знать, что больше – не значит лучше. Самый оптимальным и идеальным вариантом я считаю наличие 4-5 кулеров. 1-2 на вдув около корзинок для жестких дисков, 1 на вдув снизу и 2 на выдув сверху. Дополнительные вентиляторы – излишни. Кстати встроенные кулеры, как правило, оказываются очень шумными и недолговечными, не считая самых топовых моделей. Поэтому я рекомендую докупать хорошие кулеры отдельно. Главное чтобы в корпусе были предполагаемые посадочные места, как здесь.

Хотя конечно вы можете подшаманить и вырезать их сами, но это решение уж совсем на любителя. Ну и не стоит забывать о размере кулеров. Большие лопасти создают больший воздушный поток при меньшем количестве оборотов, а значит они более эффективные и менее шумные.

Расположение блока питания в корпусе

Рассмотрим плюсы и минусы каждого. При верхнем расположении блок питания забирает воздух снизу, то есть изнутри системы и выпускает наверх, из системы наружу. Внутри корпуса воздух всегда горячее, чем снаружи, а значит рабочие температуры блока питания при верхнем креплении всегда выше, чем у блока питания с нижнем креплением. Это приводит к снижению ресурса работы самого блока. Из плюсов могу отметить только то, что сверху БП меньше забивается пылью, но при наличии хороших фильтров и БП снизу не будет засоряться. Именно поэтому я рекомендую всем покупать корпус, предполагающий нижнее крепление для блока питания.

Поскольку я упомянул пылевые фильтры, скажу пару слов и о них.

Для кого-то это не является ключевым фактором, но я считаю это очень важным моментом. Фильтры не позволяют пыли легко проникать внутрь системы, безусловно, она там всё равно будет скапливаться, но темпы засорения значительно ниже. Конечно, если для вас еженедельная чистка системного блока не проблема, то можете не обращать на данный критерий никакого внимания. Так же не стоит забывать и о том, что пыль напрямую влияет на производительность любого железа, повышая его рабочую температуру. А все мы прекрасно знаем, как это сказывается на нашем ПК.

В случае если у вас много жестких дисков, то не забудьте посмотреть на количество посадочных мест для накопителей.

Расположение кнопки POWER, RESET и USB-портов на передней панели

Лично мне нравится такой корпус. Расположение кнопки POWER, RESET, USB-портов, а также выходов для подключения наушников и микрофона находятся сверху, что очень удобно. Сели за компьютер и не нужно нагибаться, чтобы включить его, перезагрузить при необходимости, подсоединить флешку, переносной USB-диск или наушники.

Кабель менеджмент

Следующий важный критерий при выборе, это кабель менеджмент.

Он позволяет скомпоновать все провода таким способом, чтобы они не болтались просто так внутри корпуса. Как я считаю, штука очень удобная, но помимо удобства носит так же и практический характер. Огромное количество проводов создает помехи для воздушного потока внутри системы, что негативным образом влияет на температуру. А, как вы уже поняли, температура внутри железной оболочки – наше все. Хоть и большинство корпусов оснащены данной функций, в природе все же встречаются экземпляры и без нее. Не упомянуть это я не мог.

Такие дополнительные функции, как разъемы для установки процессорного кулера, окантовка для защиты от повреждений, антивибрационные ножки и другие, я думаю, являются далеко необязательными, но все же приятно, если корпус всем этим оснащен. Хотя это прямым образом скажется и на цене продукта.

Так как большинство представленных на рынке моделей сделаны из одного и того же материала и имеют толщину стенок в одинаковом диапазоне (0.5-1мм), то заострять внимание я на этом не буду. Скажу лишь, что не берите корпус со слишком тонкими стенками, он будет очень шумный.

Что же касается внешнего вида, то тут дело сугубо индивидуальное. На вкус и цвет, как говорится. Но одно негласное правило все же есть. Не жертвовать функционалом ради красоты. К примеру, бывают очень стильные корпуса, у которых приток свежего воздуха ограничен передней панелью. Брать такие корпуса не стоит по причине плохой продуваемостью.

Итак, запомните следующие советы:

Форм-фактор материнской платы должен соответствовать форм-фактору корпуса, либо может быть меньше. Остальные комплектующие должны тоже без проблем ставиться внутрь.

Идеальная система охлаждения – 4-5 кулеров. Большие кулеры – эффективнее и тише.

Лучшее расположение БП – снизу.

Пылевые фильтры – залог чистоты вашего ПК.

Стенки корпуса толщиной 0.5-1мм.

Жертвовать функционалом ради красоты – гнев бога всея IT.

Не забывайте про дополнительные функции, которые могут облегчить эксплуатацию - кабель менеджмент, боковая дверь и т.д.

Напоследок хочу ответить, почему экономить на корпусе не стоит. Все дело в том, что большинство комплектующих со временем морально и технологически устаревают. Их приходится постоянно менять. А вот металлическая оболочка вашей системы может увидеть три, четыре, а то и намного больше сборок разных компонентов. Корпус очень редко меняется, именно поэтому экономить на нем не стоит. До скорых встреч в новых публикациях!

Контрольная

Информатика, кибернетика и программирование

В этом стандарте определяются требования к расположению слотов разъемов портов отверстий для крепления материнской платы к шасси корпуса к спецификации разъема блока питания и т. В свою очередь формфактор платы налагает определенные ограничения на дизайн корпуса системного блока и самого блока питания. К ним относятся: Объем корпуса и его импеданс; Толщина стенок корпуса; Количество установочных мест для жестких дисков; Способы крепления для жестких дисков; Способы фиксации интерфейсных карт и кожуха корпуса; Количество...

Вопрос 4

Корпус ПК

Корпус во многом определяет функциональные возможности компьютера, хотя, конечно, сам по себе он никак не связан с производительностью ПК.

Корпус определяет размеры материнской платы, которую в него можно установить, возможности по масштабированию ПК (сколько устройств можно будет поместить), влияет на эффективность системы охлаждения и уровень шума, создаваемого компьютером, а также определяет возможность и удобство подключения периферийных устройств.

Кроме предназначения, корпуса можно классифицировать по формфактору, который определяет особенности корпуса и возможность его использования только с материнскими платами соответствующего формфактора.

Формфактор корпуса.

Понятие форм фактора корпуса неразрывно связано с понятием формфактора материнской платы. Формфактор материнской платы – это базовые требования по дизайну материнских плат, объединенные в едином стандарте. В этом стандарте определяются требования к расположению слотов, разъемов портов, отверстий для крепления материнской платы к шасси корпуса, к спецификации разъема блока питания и т.д. В свою очередь, формфактор платы налагает определенные ограничения на дизайн корпуса системного блока и самого блока питания. Поэтому часто говорят, что корпус имеет формфактор АТХ или ВТХ.

Классификация корпусов.

По своему назначению все корпуса можно условно разделить на следующие типы:

  • Корпуса для домашних игровых ПК;
  • Корпуса для домашних универсальных ПК;
  • Корпуса для домашних мини-ПК;
  • Корпуса для мультимедийных центров;
  • Корпуса для офисных ПК;
  • Корпуса для рабочих станций;

Рассмотрим наиболее важные критерии, по которым можно судить о функциональности корпуса и его пригодности для того или иного ПК. К ним относятся:

  • Объем корпуса и его импеданс;
  • Толщина стенок корпуса;
  • Количество установочных мест для жестких дисков;
  • Способы крепления для жестких дисков;
  • Способы фиксации интерфейсных карт и кожуха корпуса;
  • Количество установочных мест для вентиляторов и их типоразмер;
  • Возможность вывода USB портов, а также звуковых разъемов на лицевую панель корпуса;
  • Наличие вентиляционных отверстий на передней панели корпуса;
  • Характеристики блока питания;
  • Возможность молдинга;
  • Количество отсеков для установки устройств с формфактором 5,25дюйма.

Толщина стенок корпуса, а также металла несущей рамы определяет акустические характеристики корпуса. При достаточной толщине металла (не менее 0,8мм) резко снижается уровень шума и практически отсутствует вибрация. Дешевые корпуса изготавливаются из стали толщиной 0,5-0,6 мм, и их стенки легко входят в вибрацию.

Количество отсеков для установки устройств с формфактором 5,25 дюйма определяет то количество устройств, которые вы можете установить в корпус ПК. К таким устройствам относятся CD- и DVD-приводы, а также специализированные планки (например, планка управления звуковой картой или планки, на которые выводятся рукоятки управления скоростью вращения вентиляторов). Кроме того, в эти отсеки могут устанавливаться системы жидкостного охлаждения.

Количество установочных мест для жестких дисков – еще одна характеристика корпуса. Желательно, что бы диски устанавливались в специальной съемной корзине. Кроме того, достаточно важным фактором является способ крепления винчестеров (просто болтиками или резиновые демпферы, предотвращающие прямой контакт жесткого диска с шасси корпуса).

Вопрос 5.

Блоки питания

Блок питания предназначен для преобразования переменного напряжения электрической сети в постоянные напряжения для электропитания устройств располагающихся в системном блоке компьютера. Мощность используемого блока питания должна соответствовать суммарной потребляемой мощности всех подключенных устройств и иметь определенный запас. Большинство электронных компонентов компьютера требует напряжение питания +5 В, для двигателей накопителей нужны +12 В, для питания некоторых цепей требуется +3,3 В; -5 В; -12 В.

В корпусе типового блока питания стандарта АТХ установлен вентилятор охлаждения, два сетевых разъема. Один разъем предназначен для подключения к сети переменного тока, от другого возможно выполнять электропитание монитора компьютера. Для подключения блока питания к системной плате используется 20-контактный и дополнительный 4-контактный разъемы, питание дисковых накопителей осуществляется через однорядные 4-контактные разъемы. Если имеющихся разъемов не хватает можно применять специальные разветвители. На корпусе разъемов имеются «ключи», предотвращение неправильное подключение.

Жгуты проводов, выходящие из корпуса блока питания имеют стандартную цветовую маркировку:

  • Красный 5 В;
  • Оранжевый +3,3 В;
  • Желтый +12 В;
  • Синий -12 В;
  • Белый -5 В;
  • Черный GND/

Существуют модели блоков питания, в которых не используются жгуты с разъемами, а напряжение питания выведены на разъем, закрепленный на корпусе блока. Необходимые соединения выполняются отдельными кабелями от блока питания к устройству. При таком подходе отсутствуют «беспризорные» жгуты в системном корпусе.

Современные процессоры с высокими тактовыми частотами, производительные видеокарты и некоторые другие устройства имеют очень большие токи потребления. Не все блоки питания удовлетворяют жестким требованиям к источникам питания система базе высокопроизводительных процессоров и видеокарт. Особые жесткие требования предъявляются к цепям питания +5В и +3,3В. Для устойчивой работы всех компонентов компьютера необходимо, чтобы блок питания обеспечивал максимальные токи потребления для всех выходных напряжений. Для подбора требуемой мощности блока питания необходимо просуммировать суммарные токи потребления всех устройств по каждому номиналу напряжения и сравнить с максимальным током по этой цепи, обеспечиваемой блоком питания. Упрощенный вариант выбора предполагает суммирование мощностей всех устройств компьютера и последующий выбор блока питания с запасом от этой мощности в 30-50%.

Основная характеристика блока питания – это мощность, которая должна соответствовать количеству устройств, устанавливаемых в ПК. Кроме того, именно блок питания, а точнее, количество разъемов (молексов), определяет, сколько именно дополнительных устройств может быть расположено внутри ПК. Некоторые боки питания оснащены разъемами питания для подключения жестких дисков с интерфейсом SATA.

От эффективности блока питания напрямую зависит стабильность работы всей системы. Кроме мощности, важна еще и стабильность характеристик тока. О качестве блока питания свидетельствует его вес: легкий блок питания, как правило будет более дешевым и менее надежным.

В настоящее время разработано достаточно большое количество систем охлаждения, которые отличаются друг от друга принципом функционирования системы теплоотвода, то есть среды, используемой для отвода тепла. По системам теплоотвода системы охлаждения можно разделить на следующие категории:

  • Пассивные системы охлаждения на основе радиаторов;
  • Системы охлаждения на основе тепловых трубок;
  • Воздушные системы охлаждения;
  • Жидкостные системы охлаждения;
  • Системы охлаждения на основе модулей Пельтье.

Пассивные системы охлаждения на основе радиаторов. Традиционная система охлаждения процессора или другой горячей микросхемы, называемая кулером, включает в себя радиатор и вентилятор. Радиатор необходим, для того чтобы, увеличить интенсивность теплообмена между процессором и окружающим пространсвом. Радиаторы выполняются из алюминия, меди или из комбинации обоих металлов.

Радиаторы должны отвечать определенным требованиям:

  1. Быстро забирать тепло от процессора;
  2. Хорошо проводить тепло от своей нижней (горячей) поверхности к верхней (холодной);
  3. Эффективно рассеивать это тепло в окружающее пространство.

Передача тепла между процессором и радиатором (процесс теплоотдачи) зависит от разности температур на границе двух сред, от площади контакта и от контактирующих материалов.

Чтобы повысить эффективность теплопроводности внутри самого радиатора, его изготавливают из материала с высоким коэффициентом теплопроводности. Самым высоким коэффициентом теплопроводности обладает серебро, но из-за высокой стоимости оно не используется для изготовления радиаторов. На втором месте стоит медь, поэтому ее часто используют при изготовлении радиаторов.

Чтобы увеличить эффективность теплоотдачи между поверхностью микросхемы и радиатором, в качестве промежуточного слоя между ними используют термопасту.

Чтобы увеличить эффективность теплоотдачи между поверхностью радиатора и окружающим воздухом, увеличивают площадь радиатора (площадь теплового рассеивания), делая поверхность радиатора ребристой.

Чтобы кардинально уменьшить тепловое сопротивление пассивного радиатора можно при использовании дополнительного вентилятора. Вентилятор создает принудительную конвекцию воздуха, что способствует, возрастанию эффективности теплообмена между радиатором и окружающим пространством. Поэтому для уменьшения теплового сопротивления в купе с радиатором используется вентилятор, а их совокупность называется кулером.

Системы охлаждения на основе тепловых трубок. Тепловые трубы встречаются в системах охлаждения чипсетов и компонентов видеокарт.

Рассмотрим принцип действия тепловой трубы (прототип термосифон). Принцип действия термосифона основан на таком физическом явлении, как конвекция (рис.8.1.). Простейший термосифон представляет собой полую трубку из меди, внутри которой имеется небольшое количество рабочей жидкости. Жидкость может быть различной – все зависит от характерных температур. Для температур от 0 до 300 0 С в качестве рабочей жидкости может использоваться вода. После добавления жидкости из корпуса термосифона откачивают воздух, а корпус запаивают (герметизируют). Термосифон располагается вертикально, а конец с жидкостью помещается в область повышенной температуры. При подводе тепла жидкость начинает превращаться в пар (зона испарения). На скорость парообразования влияют такие факторы, как температура жидкости и давление. Чтобы повысить интенсивность парообразования при температурах, которые значительно ниже температуры кипения жидкости, как раз и создается разряженное давление внутри термосифона.

Образующийся при нагревании пар в результате конвекции движется вверх, то есть в зону с меньшей температурой. В результате остывания пар конденсируется и стекает по стенкам термосифона вниз. Для эффективного теплоотвода с помощью такого термосифона необходимо обеспечить постоянный отвод тепла от зоны конденсации, что можно сделать с помощью радиатора.

В тепловой трубе в качестве сил, поднимающих конденсат против сил гравитации, используются капилярные силы, возникающие при смачивании жидкостью капилярно-пористого материала. В отличие от термосифона, тепловая трубка работает в любом положении (рис.8.2.)

Тепловые трубы, используемые для системы охлаждения процессоров, обычно изготавливают из меди. При этом корпус тепловой труби должен быть герметичным, выдерживать перепад давлений между внутренней и внешней средами и обеспечивать подвод тепла к рабочей жидкости и отвод тепла от нее. Диаметр тепловой трубы может быть различным однако должно соблюдаться условие, чтобы внутренний диаметр полопсти исключал действие капилярных сил, то есть чтобы паровой канал не превратился в капилярный.

Для охлаждения процессоров в качестве рабочей жидкости можно использовать воду (диапазон рабочих температур – от 30 до 200 о С) или ацетон (диапазон рабочих температур – от 0 до 120 о С).

Капиллярно-пористый материал, используемый в тепловых трубках, должен быть достаточно мелкопористым для улучшения капиллярного эффекта, но в то же время слишком мелкопористая структура будет препятствовать проникновению жидкости. Поэтому выбор материала для фитиля зависит и от рабочих температур, и от общей длины тепловой трубки.

Воздушные системы охлаждения.

Для уменьшения теплового сопротивления кулеры оснащаются вентиляторами. Вентиляторы используются не только вместе с радиаторами, но и отдельно для создания принудительной конвекции воздуха внутри системного блока (или блока питания). Основу всех современных вентиляторов, используемых в ПК, составляет двигатель постоянного тока с напряжением питания 12В.

Вентиляторы могут быть выполнены на подшипниках скольжения и подшипниках качения. Используются также комбинированные схемы из одного подшипника скольжения и одного подшипника качения. Кроме того, могут использоваться два подшипника качения.

Вентиляторы на основе подшипников скольжения (рис.8.3.) наиболее посты в изготовлении и дешевы. Однако они довольно шумные, а срок их эксплуатации недолог. Причем со временем уровень шума, создаваемого таким подшипником, только увеличивается.

Вентиляторы на основе подшипников качения (рис.8.4.) дороже, но и качественнее. Во-первых, они надежнее в работе, а во вторых, значительно менее шумные по сравнению с подшипниками скольжения. Все вентиляторы так называемых бесшумных серий основаны именно на подшипниках качения.

Кроме типов используемых подшипников и особенностей схем контроля работы двигателя, вентиляторы характеризуются производительностью, скоростью вращения, типоразмером и уровнем шума.

Производительность вентилятора является его важнейшей технической характеристикой и определяет объем воздуха, прокачиваемый вентилятором в единицу времени. Производительность вентилятора принято выражать в кубических футах в минуту. Типичные значения производительности вентиляторов – от 10 до 50 CFM .

Скорость вращения вентилятора измеряется в оборотах в минуту. Производительность вентилятора непосредственно связана со скоростью вращения: чем быстрее вращается вентилятор, тем больший воздушный поток он создает. Типичные значения скорости вращения вентиляторов – от 1000 до 5000 об/мин.

По типоразмеру наиболее распространены вентиляторы 60х60, 80х80, 92х92 и 120х120 мм. Чем больше размер вентилятора, тем выше его производительность.

Одной из важнейших эксплуатационных характеристик вентиляторов является уровень создаваемого ими шума. Уровень шума вентиляторов выражается в децибелах по фильтру А (дБА) (фильтр А учитывает особенность восприятия звука человеческим ухом на разных частотах). Человек воспринимает звук начиная с 30 дБА, а типичное значение шума, создаваемого современными вентиляторами, лежит в диапазоне от 32 до 50 дБА.

Уровень шума вентилятора напрямую зависит от скорости его вращения. Наиболее тихими являются именно 120-миллиметровые вентиляторы, поскольку для создания требуемого воздушного потока они могут вращаться с более низкой скоростью, чем вентиляторы меньшего типоразмера.

Жидкостные системы охлаждения. Принципиальная разница между воздушным и жидкостным охлаждением заключается в том, что в последнем случае для переноса тепла вместо воздуха используется жидкость, обладающая большей, по сравнению с ним, теплоемкостью. Для этого вместо воздуха через радиатор прокачивается вода или другая подходящая для охлаждения жидкость. Циркулирующая жидкость обеспечивает лучший теплоотвод, чем поток воздуха.

Другое различие заключается в том, что жидкостные системы охлаждения гораздо компактнее традиционных воздушных кулеров. Именно поэтому первыми стали применять жидкостное охлаждение на серийных устройствах производители ноутбуков.

С точки зрения конструкции системы принудительной циркуляции жидкости по замкнутому контуру системы жидкостного охлаждения можно разделить на два типа: внутренние и внешние.

Никакого принципиального различия между внутренними и внешними системами не существует. Разница заключается лишь в том, какие функциональные блоки находятся внутри корпуса, а какие – снаружи.

Принцип действия жидкостных систем охлаждения достаточно прост и напоминает систему охлаждения в автомобильных двигателях. Холодная жидкость (как правило, дистиллированная вода) прокачивается через радиаторы охлаждаемых устройств, в которых она нагревается (отводит тепло). После этого нагретая жидкость поступает в теплообменник, в котором обменивается теплом с окружающим пространством и охлаждается. Для эффективного теплообмена с окружающим пространством в теплообменниках, как правило, используются вентиляторы. Все компоненты конструкции соединяются между собой силиконовыми шлангами диаметром 5-10 мм. Чтобы заставить жидкость циркулировать по замкнутому корпусу, используется специальный насос – помпа. Структурная схема такой системы показана на рис.8.14.

Посредством систем жидкостного охлаждения тепло отводится от центральных процессоров и графических процессоров видеокарт. При этом жидкостные радиаторы для графических и центральных процессоров различаются между собой. Для графических процессоров они меньше по размеру, однако принципиально ничем друг от друга не отличаются. Эффективность жидкостных радиаторов определяется площадью контакта его поверхности с жидкостью, поэтому для увеличения площади контакта внутри жидкостных радиаторов устанавливают ребра или столбчатые иголки.

Во внешних жидкостных системах охлаждения внутри корпуса компьютера размещается только жидкостный радиатор, а резервуар с охлаждающей жидкостью, помпа и теплообменник, помещенные в единый блок, выносятся за пределы корпуса ПК.


А также другие работы, которые могут Вас заинтересовать

41628. Синтез моделей тіла людини за дії допустимих напруг дотику 616.17 KB
Львів 2013 Мета роботи: розрахувати параметри моделі тіла людини за дії на неї довготривалих допустимих напруг. Загальні відомості про синтез моделей тіла людини Тіло людини як елемент електричного кола складається з декількох шарів з різними електричними характеристиками. За інших рівних умов напруженість електричного поля в тілі тим менша чим вища його електрична проникність що характеризує здатність тіла до поляризації.
41629. ИССЛЕДОВАНИЕ ЦЕПЕЙ С ИНДУКТИВНЫМИ СВЯЗЯМИ 108.39 KB
Описание установки: В работе используются пара индуктивно связанных катушек: катушки LS и LT с коэффициентом связи KST . Результаты измерений: Ls=L3 Lt=L1 R3=220 Ом R4=20Ом Ls Lt №катушки LмГн RОм №катушки LмГн RОм L3 292 46 L1 83 25 I1=300 мА UL1=16 В Исследование цепи с последовательным включением индуктивно связанных катушек Согласное Встречное IА Uрег В ULS В ULT В UL В I А Uрег В ULS В ULT В UL В 03 816 16 094 196 03 992 406 226 631 Расчеты производятся с использованием пакета Mthcd....
41630. Однофазный трансформатор 36.1 KB
Паспортные данные исследуемого трансформатора: Собрали схему.При проведении опыта записали характеристики трансформатора в пределах U1=100÷210 B V1 1 W1 V2 220 В АТр Тр Результаты измерений Результаты вычислений B К 100 2015 00165 08 04848 293847 60606 530059 5 068 130 235 00875 12 01054 15673 14857 14774 55 088 150 279 10375 2 00128 1858 1445 14448 53 102 170 313 12 22 00107 1527 1416 14159 54 115 190 349 1375 3 001148 1586 1381 13809 54 129 210 3865 1625 38 00111...
41631. Сервисное программное обеспечение и технологии MS Windows 1022.47 KB
Вывод приобретел практические навыков при работе с сервисным программным обеспечением, изучение технологий обмена данными в операционной системе MS Windows
41632. ЧИСЕЛЬНЕ ІНТЕГРУВАННЯ ФУНКЦІЙ 55.64 KB
Хід роботи: Згідно з варіантом одержати значення визначеного інтегралу методами прямокутників трапецій і парабол. Для наближеного інтегрування використаємо формулу трапецій і формулу Сімпсона Формула трапецій: b ∫fxdx=hffb 2fx1 fx2 fxn1 b Формула Сімпсона: ∫fxdx=h 3}