Понятие гис. Геоинформационные системы Лучшие геоинформационные системы

ЛЕКЦИЯ 1. ОБЩИЕ СВЕДЕНИЯ О ГЕОГРАФИЧЕСКИХ ИНФОРМАЦИОННЫХ СИСТЕМАХ

1.1 Понятие о геоинформационных системах

Географическая информационная система или геоинформационная система (ГИС) - это информационная система, обеспечивающая сбор, хранение, обработку, анализ и отображение пространственных данных и связанных с ними непространственных, а также получение на их основе информации и знаний о географическом пространстве.

Считается, что географические или пространственные данные составляют более половины объема всей циркулирующей информации, используемой организациями, занимающимися разными видами деятельности, в которых необходим учет пространственного размещения объектов. ГИС ориентирована на обеспечение возможности принятия оптимальных управленческих решений на основе анализа пространственных данных.

Ключевыми словами в определении ГИС являются - анализ пространственных данных или пространственный анализ. ГИС может ответить на следующие вопросы:

Что находится в заданной области?

Где находится область, удовлетворяющая заданному набору условий?

Современные ГИС расширили использование карт за счет хранения графических данных в виде отдельных тематических слоев, а качественных и количественных характеристик составляющих их объектов в виде баз данных. Такая организация данных при наличии гибких механизмов управления ими, обеспечивает принципиально новые аналитические возможности.

1.2 «Данные», «информация», «знания» в геоинформационных системах

Конкретизируя термины "данные", "информация", "знания", применительно к оперированию ими в информационной системе, можно отметить, что, имея много общего, эти понятия различаются по своей сути.

Под данными понимается совокупность фактов, известных об объектах, либо результаты измерения этих объектов. Данные, используемые в ГИС, отличаются высокой степенью формализации. Данные - это как бы строительный элемент в процессе создания информации, поскольку она получается в процессе обработки данных.

Применительно к ГИС под информацией понимается совокупность сведений, определяющих меру наших знаний об объекте.

В таком контексте знания можно рассматривать как результат интерпретации информации. Наиболее общее определение: знание - результат познания действительности, получивший подтверждение в практике. Научное знание отличается своей систематичностью, обоснованностью и высокой степенью структуризации.

Информационные системы можно рассматривать как эффективный инструмент получения знаний.

Различия между терминами «данные», «информация» и «знания» прослеживаются в истории развития технических систем, так вначале появились банки данных, позднее информационные системы, затем появились системы, основанные на знаниях - интеллектуальные системы (экспертные системы).

В настоящее время на рынке программных продуктов представлено несколько видов систем, работающих с пространственно распределенной информацией, к ним в частности, относятся системы автоматизированного проектирования, автоматизированного картографирования и ГИС. ГИС по сравнению с другими автоматизированными системами обладают развитыми средствами анализа пространственных данных.

.3 Обобщенные функции ГИС-систем

Большинство современных ГИС осуществляют комплексную обработку информации, используя ниже приведенные функции:

Ввод и редактирование данных;

Поддержка моделей пространственных данных;

Хранение информации;

Преобразование систем координат и трансформация картографических проекций;

Растрово-векторные операции;

Измерительные операции;

Полигональные операции;

Операции пространственного анализа;

Различные виды пространственного моделирования;

Цифровое моделирование рельефа и анализ поверхностей;

Вывод результатов в разных формах.

.4 Классификация ГИС

ГИС системы разрабатываются с целью решения научных и прикладных задач по мониторингу экологических ситуаций, рациональному использованию природных ресурсов, а также для инфраструктурного проектирования, городского и регионального планирования, для принятия оперативных мер в условиях чрезвычайных ситуаций др.

Множество задач, возникающих в жизни, привело к созданию различных ГИС, которые могут классифицироваться по следующим признакам :

По функциональным возможностям:

Полнофункциональные ГИС общего назначения;

специализированные ГИС ориентированы на решение конкретной задачи в какой либо предметной области;

информационно-справочные системы для домашнего и информационно-справочного пользования.

Функциональные возможности ГИС определяются также архитектурным принципом их построения:

закрытые системы - не имеют возможностей расширения, они способны выполнять только тот набор функций, который однозначно определен на момент покупки.

открытые системы отличаются легкостью приспособления, возможностями расширения, так как могут быть достроены самим пользователем при помощи специального аппарата (встроенных языков программирования).

По пространственному (территориальному) охвату:

Глобальные (планетарные);

общенациональные;

региональные;

локальные (в том числе муниципальные).

По проблемно-тематической ориентации:

Общегеографические;

экологические и природопользовательские;

отраслевые (водных ресурсов, лесопользования, геологические, туризма и т.д.);

По способу организации географических данных:

Векторные;

растровые;

векторно-растровые ГИС.

1.5 Источники данных и их типы

В качестве источников данных для формирования ГИС служат:

- картографические материалы (топографические и общегеографические карты, карты административно-территориального деления, кадастровые планы и др.). Сведения, получаемые с карт, имеют территориальную привязку, поэтому их удобно использовать в качестве базового слоя ГИС. Если нет цифровых карт на исследуемую территорию, тогда графические оригиналы карт преобразуются в цифровой вид.

данные дистанционного зондирования (ДДЗ) все шире используются для формирования баз данных ГИС. К ДДЗ, прежде всего, относят материалы, получаемые с космических носителей. Для дистанционного зондирования применяют разнообразные технологии получения изображений и передачи их на Землю, носители съемочной аппаратуры (космические аппараты и спутники) размещают на разных орбитах, оснащают разной аппаратурой. Благодаря этому получают снимки, отличающиеся разным уровнем обзорности и детальности отображения объектов природной среды в разных диапазонах спектра (видимый и ближний инфракрасный, тепловой инфракрасный и радиодиапазон). Все это обуславливает широкий спектр экологических задач, решаемых с применением ДДЗ.

К методам дистанционного зондирования относятся и аэро- и наземные съемки, и другие неконтактные методы, например гидроакустические съемки рельефа морского дна. Материалы таких съемок обеспечивают получение как количественной, так и качественной информации о различных объектах природной среды.

материалы полевых изысканий территорий, включают данные топографических, инженерно-геодезических изысканий, кадастровой съемки, геодезические измерения природных объектов, выполняемые нивелирами, теодолитами, электронными тахеометрами, GPS приемниками, а также результаты обследования территорий с применением геоботанических и других методов, например, исследования по перемещению животных, анализ почв и др.

статистические данные содержат данные государственных статистических служб по самым разным отраслям народного хозяйства, а также данные стационарных измерительных постов наблюдений (гидрологические и метеорологические данные, сведения о загрязнении окружающей среды и т. д)).

литературные данные (справочные издания, книги, монографии и статьи, содержащие разнообразные сведения по отдельным типам географических объектов).

В ГИС редко используется только один вид данных, чаще всего это сочетание разнообразных данных на какую-либо территорию.

ЛЕКЦИЯ 2. ОСНОВНЫЕ КОМПОНЕНТЫ ГИС

К основным компонентам ГИС относят : техническое, программное, информационное обеспечение. Требования к компонентам ГИС определяются, в первую очередь, пользователем, перед которым стоит конкретная задача (учет природных ресурсов, либо управление инфраструктурой города), которая должна быть решена для определенной территории, отличающейся природными условиями и степенью ее освоения.

.1 Техническое обеспечение

Техническое обеспечение - это комплекс аппаратных средств, применяемых при функционировании ГИС: рабочая станция или персональный компьютер (ПК), устройства ввода-вывода информации, устройства обработки и хранения данных, средства телекоммуникации.

Рабочая станция или ПК являются ядром любой информационной системы и предназначены для управления работой ГИС и выполнения процессов обработки данных, основанных на вычислительных или логических операциях. Современные ГИС способны оперативно обрабатывать огромные массивы информации и визуализировать результаты.

Ввод данных реализуется с помощью разных технических средств и методов: непосредственно с клавиатуры, с помощью дигитайзера или сканера, через внешние компьютерные системы. Пространственные данные могут быть получены электронными геодезическими приборами, непосредственно с помощью дигитайзера и сканера, либо по результатам обработки снимков на аналитических фотограмметрических приборах или цифровых фотограмметрических станциях.

Устройства для обработки и хранения данных сконцентрированы в системном блоке, включающем в себя центральный процессор, оперативную память, внешние запоминающие устройства и пользовательский интерфейс.

Устройства вывода данных должны обеспечивать наглядное представление результатов, прежде всего на мониторе, а также в виде графических оригиналов, получаемых на принтере или плоттере (графопостроителе), кроме того, обязательна реализация экспорта данных во внешние системы.

.2 Программное обеспечение

Программное обеспечение - совокупность программных средств, реализующих функциональные возможностей ГИС, и программных документов, необходимых при их эксплуатации.

Структурно программное обеспечение ГИС включает базовые и прикладные программные средства.

Любая ГИС работает с данными двух типов данных - пространственными и атрибутивными. Для их ведения программное обеспечение должно включить систему управления базами тех и других данных (СУБД), а также модули управления средствами ввода и вывода данных, систему визуализации данных и модули для выполнения пространственного анализа.

Прикладные программные средства предназначены для решения специализированных задач в конкретной предметной области и реализуются в виде отдельных приложений и утилит.

2.3 Информационн ое обеспечение

Информационное обеспечение - совокупность массивов информации, систем кодирования и классификации информации. Информационное обеспечение составляют реализованные решения по видам, объемам, размещению и формам организации информации, включая поиск и оценку источников данных, набор методов ввода данных, проектирование баз данных, их ведение и метасопровождение. Особенность хранения пространственных данных в ГИС - их разделение на слои. Многослойная организация электронной карты, при наличии гибкого механизма управления слоями, позволяет объединить и отобразить гораздо большее количество информации, чем на обычной карте. Данные о пространственном положении (географические данные) и связанные с ними табличные могут подготавливаться самим пользователем либо приобретаться. Для такого обмена данными важна инфраструктура пространственных данных.

Инфраструктура пространственных данных определяется нормативно-правовыми документами, механизмами организации и интеграции пространственных данных, а также их доступность разным пользователям. Инфраструктура пространственных данных включает три необходимых компонента: базовую пространственную информацию, стандартизацию пространственных данных, базы метаданных и механизм обмена данными.

ЛЕКЦИЯ 3. СТРУКТУРЫ И МОДЕЛИ ДАННЫХ

3.1 Отображение объектов реального мира в ГИС

Объекты реального мира, рассматриваемые в геоинформатике, отличаются пространственными, временными и тематическими характеристиками.

Пространственные характеристики определяют положение объекта в заранее определенной системе координат, основное требование к таким данным - точность.

Временные характеристики фиксируют время исследования объекта и важны для оценки изменений свойств объекта с течением времени. Основное требование к таким данным - актуальность, что означает возможность их использования для обработки, неактуальные данные - это устаревшие данные.

Тематические характеристики описывают разные свойства объекта, включая экономические, статистические, технические и другие свойства, основное требование - полнота.

Для представления пространственных объектов в ГИС используют пространственные и атрибутивные типы данных.

Пространственные данные - сведения, которые характеризуют местоположение объектов в пространстве относительно друг друга и их геометрию.

Пространственные объекты представляют с помощью следующих графических объектов: точки, линии, области и поверхности.

Описание объектов осуществляется путем указания координат объектов и составляющих их частей.

Точечные объекты - это такие объекты, каждый из которых расположен только в одной точке пространства, представленной парой координат X, Y. В зависимости от масштаба картографирования, в качестве таких объектов могут рассматриваться дерево, дом или город.

Линейные объекты, представлены как одномерные, имеющие одну размерность - длину, ширина объекта не выражается в данном масштабе или не существенна. Примеры таких объектов: реки, границы муниципальных округов, горизонтали рельефа.

Области (полигоны) - площадные объекты, представляются набором пар координат (Х, У) или набором объектов типа линия, представляющих собой замкнутый контур. Такими объектами могут быть представлены территории, занимаемые определенным ландшафтом, городом или целым континентом.

Поверхность - при ее описании требуется добавление к площадным объектам значений высоты. Восстановление поверхностей осуществляется с помощью использования математических алгоритмов (интерполяции и аппроксимации) по исходному набору координат X, Y, Z.

Дополнительные непространственные данные об объектах образуют набор атрибутов.

Атрибутивные данные - это качественные или количественные характеристики пространственных объектов, выражающиеся, как правило, в алфавитно-цифровом виде.

Примеры таких данных: географическое название, видовой состав растительности, характеристики почв и т.п.

Природа пространственных и атрибутивных данных различна, соответственно различны и методы манипулирования (хранения, ввода, редактирования, поиска и анализа) для двух этих составляющих геоинформационной системы. Одна из основных идей, воплощенных в традиционных ГИС - это сохранение связи между пространственными и атрибутивными данными, при раздельном их хранении и, частично, раздельной обработке.

Общее цифровое описание пространственного объекта включает: наименование; указание местоположения; набор свойств; отношения с другими объектами. Наименованием объекта служит его географическое название (если оно есть), его условный код или идентификатор, присваиваемый пользователем или системой.

Однотипные объекты по пространственному и тематическому признакам объединяются в слои цифровой карты, которые рассматриваются как отдельные информационные единицы, при этом существует возможность совмещения всей имеющейся информации

.2 Структуры данных

Для представления пространственных данных в ГИС применяют векторные и растровые структуры данных.

Векторная структура - это представление пространственных объектов в виде набора координатных пар (векторов), описывающих геометрию объектов (рис.1).

Рис. 1. Векторное представление пространственных данных

Растровая структура данных предполагает представления данных в виде двухмерной сетки, каждая ячейка которой содержит только одно значение, характеризующее объект, соответствующий ячейке растра на местности или на изображении. В качестве такой характеристики может быть код объекта (лес, луг и т.д.) высота или оптическая плотность.

Точность растровых данных ограничивается размером ячейки. Такие структуры являются удобным средством анализа и визуализации разного рода информации.

Рис. 2. Растровая структура данных

Для реализации растровых и векторных структур разработаны различные модели данных.

.3 Модели данных

Модели пространственных данных - логические правила для формализованного цифрового описания пространственных объектов

Векторные модели данных. Существует несколько способов объединения векторных структур данных в векторную модель данных, позволяющую исследовать взаимосвязи между объектами одного слоя или между объектами разных слоев. Простейшей векторной моделью данных является «спагетти»- модель (рис.3). В этом случае переводится «один в один» графическое изображение карты.

Рис. 3. «Спагетти»-модель


В этой модели не содержится описания отношений между объектами, каждый геометрический объект хранится отдельно и не связан с другими, например общая граница объектов 25 и 26 записывается дважды, хотя с помощью одинакового набора координат. Все отношения между объектами должны вычисляться независимо, что затрудняет анализ данных и увеличивает объем хранимой информации.

Векторные топологические модели (рис. 4) содержат сведения о соседстве, близости объектов и другие, характеристики взаимного расположения векторных объектов.

Рис. 4. Векторная топологическая модель данных


Файл областей

Номера областей

Список дуг

Файл дуг

Номер дуги

Правый полигон

Левый полигон

Начальный узел

Конечный узел


Топологическая информация описывается набором узлов и дуг. Узел - это пересечение двух или более дуг, и его номер используется для ссылки на любую дугу, которой он принадлежит. Каждая дуга начинается и заканчивается либо в точке пересечения с другой дугой, либо в узле, не принадлежащем другим дугам. Дуги образуются последовательностью отрезков, соединённых промежуточными точками. В этом случае каждая линия имеет два набора чисел: пары координат промежуточных точек и номера узлов. Кроме того, каждая дуга имеет свой идентификационный номер, который используется для указания того, какие узлы представляют её начало и конец.

Разработаны и другие модификации векторных моделей, в частности, существуют специальные векторные модели для представления моделей поверхностей, которые будут рассмотрены далее.

Растровые модели используются в двух случаях. В первом случае - для хранения исходных изображений местности. Во втором случае, для хранения тематических слоев, когда пользователей интересуют не отдельные пространственные объекты, а набор точек пространства, имеющих различные характеристики (высотные отметки или глубины, влажность почв и т.д.), для оперативного анализа или визуализации.

Существует несколько способов хранения и адресации значений отдельных ячеек растра, и их атрибутов, названий слоев и легенд.

При использовании растровых моделей актуальным является вопрос сжатия растровых данных, для которого разработаны методы группового кодирования, блочного кодирования, цепочного кодирования и представления в виде квадродерева.

.4 Форматы данных

Форматы данных определяют способ хранения информации на жестком диске, а также механизм ее обработки. Модели данных и форматы данных определенным способом взаимосвязаны.

Существует большое количество форматов данных. Можно отметить, что во многих ГИС поддерживаются основные форматы хранения растровых данных (TIFF, JPEG, GIF, BMP, WMF, PCX), а также GeoSpot, GeoTIFF, позволяющие передавать информацию о привязке растрового изображения к реальным географическим координатам, и MrSID - для сжатия информации. Наиболее распространенным среди векторных форматов является - DXF.

Все системы поддерживают обмен пространственной информацией (экспорт и импорт) со многими ГИС и САПР через основные обменные форматы: SHP, E00, GEN (ESRI), VEC (IDRISI), MIF (MapInfo Corp.), DWG, DXF (Autodesk), WMF (Microsoft), DGN (Bentley). Только некоторые, в основном отечественные системы, поддерживают российские обменные форматы - F1M (Роскартография), SXF (Военно-топографическая служба).

Довольно часто для эффективной реализации одних компьютерных операций предпочитают векторный формат, а для других растровый. Поэтому, в некоторых системах реализуются возможности манипулирования данными в том и в другом формате, и функции преобразования векторного в растровый, и наоборот, растрового в векторный форматы.

.5 Базы данных и управление ими

Совокупность цифровых данных о пространственных объектах образует множество пространственных данных и составляет содержание баз данных.

База данных (БД) - совокупность данных организованных по определенным правилам, устанавливающим общие принципы описания, хранения и манипулирования данными

Создание БД и обращение к ней (по запросам) осуществляется с помощью системы управления базами данных (СУБД).

Логическая структура элементов базы данных определяется выбранной моделью БД. Наиболее распространенными моделями БД являются иерархические, сетевые и реляционные и объектно-ориентированные.

Иерархические модели представляют древовидную структуру, в этом случае каждая запись связана только с одной записью, находящейся на более высоком уровне.

Такая система хорошо иллюстрируется системой классификации растений и животных. Примером может также служить структура хранения информации на дисках ПК. Главное понятие такой модели уровень. Количество уровней и их состав зависит от принятой при создании БД классификации. Доступ к любой из этих записей осуществляется путем прохода по строго определенной цепочке узлов. При такой структуре легко осуществлять поиск нужных данных, но если изначально описание неполное, или не предусмотрен какой либо критерий поиска, то он становится невозможным. Для достаточно простых задач такая система эффективна, но она практически непригодна для использования в сложных системах с оперативной обработкой запросов.

Сетевые модели были призваны устранить некоторые из недостатков иерархических моделей. В сетевой модели каждая запись в каждом узле сети может быть связана с несколькими другими узлами. Записи, входящие в состав сетевой структуры, содержат в себе указатели, определяющие местоположение других записей, связанных с ними. Такая модель позволяет ускорить доступ к данным, но изменение структуры базы требует значительных усилий и времени.

Реляционные модели собирают данные в унифицированные таблицы. Таблице присваивается уникальное имя внутри БД. Каждый столбец - это поле, имеющее имя, соответствующее содержащемуся в нем атрибуту. Каждая строка в таблице соответствует записи в файле. Одно и тоже поле может присутствовать в нескольких таблицах. Так как строки в таблице не упорядочены, то определяется один или несколько столбцов, значения которых однозначно идентифицируют каждую строку. Такой столбец называется первичным ключом. Взаимосвязь таблиц поддерживается внешними ключами. Манипулирование данными осуществляется при помощи операций, порождающих таблицы. Пользователь может легко заносить в базу новые данные, комбинировать таблицы, выбирая отдельные поля и записи, и формировать новые таблицы для отображения на экране.

Объектно-ориентированные модели применяют, если геометрия определенного объекта способна охватывать несколько слоев, атрибуты таких объектов могут наследоваться, для их обработки применяют специфические методы.

Для обработки данных, размещенных в таблицах необходимы дополнительные сведения о данных, их называют метаданными.

Метаданные - данные о данных: каталоги, справочники, реестры и иные формы описания наборов цифровых данных.

ЛЕКЦИЯ 4. ТЕХНОЛОГИИ ВВОДА ДАННЫХ

4.1 Способы ввода данных

В соответствии с используемыми техническими средствами различают два способа ввода данных: дигитализацию и векторизацию. Для ручного ввода пространственных данных применяется дигитайзер. Он состоит из планшета (столика) с электронной сеткой, к которому присоединено устройство называемое курсором. Курсор представляет собой подобие графического манипулятора - мыши, имеет визир, нанесенный на прозрачную пластинку, с помощью которого оператор выполняет точное наведение на отдельные элементы карты. На курсоре помещены кнопки, которые позволяют фиксировать начало и конец линии или границы области, число кнопок зависит от уровня сложности дигитайзера. Дигитайзеры бывают разных форматов и обеспечивают разрешение 0,03 мм с общей точностью 0,08 мм на расстоянии 1,5 м. Существуют автоматизированные дигитайзеры, обеспечивающие автоматическое отслеживание линий.

Наибольшее распространение для ввода данных получили сканеры. Они позволяют вводить растровое изображение карты в компьютер. Существуют различные типы сканеров, которые различаются: по способу подачи исходного материала (планшетные и протяжные (барабанного типа); по способу считывания информации (работающие на просвет или на отражение); по радиометрическому разрешению или глубине цвета; по оптическому (или геометрическому) разрешению. Последняя характеристика определяется минимальным размером элемента изображения, который различается сканером.

.2 Преобразование исходных данных

Отсканированные исходные карты создавались в определенной картографической проекции и системе координат. При оцифровке эта сложная проекция сводиться в набор пространственных координат. Поэтому необходимо преобразовать карту к ее исходной проекции. Для этого в ГИС вводятся сведения об используемой проекции (обычно ГИС позволяет работать с большим числом проекций) и осуществляется ряд преобразований. Три основных из них, которые часто выполняются одновременно, это перенос, поворот и масштабирование.

Перенос - это просто перемещение всего графического объекта в другое место на координатной плоскости. Он выполняется добавлением определенных величин к координатам Х и У объекта:

Масштабирование тоже очень полезно, так как часто сканируются карты разных масштабов, для этого используют соотношение:

Поворот выполняется с использованием тригонометрических функций:

Все необходимые преобразования могут быть выполнены и использованием этих трех основных графических операций по координатам опорных точек.

.3 Ввод данных дистанционного зондирования

В ГИС используют не первичные материалы ДЗ, получаемые во время съемки, а производные, формируемые в результате их обработки. Данные со спутников подвергаются предварительной цифровой обработке для устранения радиометрических и геометрических искажений, влияния атмосферы и т.д. Для улучшения визуального качества исходных изображений могут применяться процедуры для изменения яркости и контрастности, фильтрации для устранения шумов или подчеркивания контуров и мелких деталей. При использовании аэрофотоснимков следует обращать внимание на искажения, вызываемые углами наклонов снимков и рельефом местности, которые могут быть устранены в процессе трасформирования или ортофототрансформирования.

ЛЕКЦИЯ 5. АНАЛИЗ ПРОСТРАНСТВЕННЫХ ДАННЫХ

5.1 Задачи пространственного анализа

К средствам пространственного анализа относятся различные процедуры манипулирования пространственными и атрибутивными данными, выполняемые при обработке запросов пользователя. (Например, операции наложения графических объектов, средства анализа сетевых структур или выделения объектов по заданным признакам).

Для каждого ГИС-пакета характерен свой набор средств пространственного анализа, обеспечивающий решение специфических задач пользователя, в тоже время можно выделить ряд основных функций, свойственных практически каждому ГИС-пакету. Это, прежде всего, организация выбора и объединения объектов в соответствии с заданными условиями, реализация операций вычислительной геометрии, анализ наложений, построение буферных зон, сетевой анализ.

.2 Основные функции пространственного анализа данных

Выбор объектов по запросу: самой простой формой запроса является получение характеристик объекта указанного курсором на экране и обратная операция, когда изображаются объекты с заданными атрибутами. Более сложные запросы позволяют выбирать объекты по нескольким признакам, например по признаку удаленности одних объектов от других, совпадающие объекты, но расположенные в разных слоях и т. д.

Для выбора данных в соответствии с определенными условиями используются SQL- запросы. Для выполнения запросов разной сложности реализованы возможности использования при составлении запросов математических и статистических функций, а также географических операторов, позволяющих выбирать объекты на основании их взаимного расположения в пространстве (например, находится ли анализируемый объект внутри другого объекта или пересекается с ним).

Обобщение данных может проводиться по равенству значений определенного атрибута, в частности для зонирования территории. Еще один способ группировки - объединение объектов одного тематического слоя в соответствии с их размещением внутри полигональных объектов других тематических слоев.

Геометрические функции: к ним относят расчеты геометрических характеристик объектов или их взаимного положения в пространстве, при этом используются формулы аналитической геометрии на плоскости и в пространстве. Так для площадных объектов вычисляются занимаемые ими площади или периметры границ, для линейных - длины, а также расстояния между объектами и т.д.

Оверлейные операции (топологическое наложение слоев) являются одними из самых распространенных и эффективных средств. В результате наложения двух тематических слоев образуется другой дополнительный слой в виде графической композиции исходных слоев. Учитывая, что анализируемые объекты могут относиться к разным типам (точка, линия, полигон), возможны разные формы анализа: точка на точку, точка на полигон и т.д. Наиболее часто анализируется совмещение полигонов.

Построение буферных зон. Одним из средств анализа близости объектов является построение буферных зон. Буферные зоны - это районы (полигоны), граница которых отстоит на заданном расстоянии от границы исходного объекта. Границы таких зон вычисляются на основе анализа соответствующих атрибутивных характеристик. При этом ширина буферной зоны может быть как постоянной, так и переменной. Например, буферная зона вокруг источника электромагнитного излучения, будет иметь форму круга, а зона загрязнения от дымовой трубы завода с учетом розы ветров будет иметь форму близкую к эллипсу.

Сетевой анализ позволяет пользователю проанализировать пространственные сети связных линейных объектов (дороги, линии электропередач и т. д.). Обычно сетевой анализ служит для задач определения ближайшего, наиболее выгодного пути, определения уровня нагрузки на сеть, определение адреса объекта или маршрута по заданному адресу и другие задачи.

.3 Анализ пространственного распределения объектов

Анализ пространственного распределения объектов. Фактически во многих случаях необходимо знать не только объем пространства, занимаемый объектами, но и расположение объектов в пространстве, которое может характеризоваться количеством объектов в определенной области, например, распределение численности населения. Наиболее распространены методы анализа распределения точечных объектов. Мерой точечного распределения служит плотность. Она определяется как результат деления числа точек на значение площади территории, на которой они расположены. Кроме плотности распределения можно оценить форму распределения. Точечные распределения встречаются в одном из четырёх возможных вариантов: равномерном (если число точек в каждой малой подобласти такое же, как и в любой другой подобласти), регулярном (если точки, разделённые одинаковыми интервалами по всей области, расположены в узлах сетки), случайном, кластерном (если точки собраны в тесные группы).

Точечные распределения могут описываться не только количеством точек в пределах подобластей. Часто анализируются локальные отношения внутри пар точек. Вычисление этого статистического показателя включает определение среднего расстояния до ближайшей соседней точки среди всех возможных пар ближайших точек. Данный метод позволяет оценить меру разреженности точек в распределении.

Распределение линий также оценивается по плотности. Обычно вычисления выполняются для сравнения разных географических областей, например по густоте гидрографической сети. Линии могут также оцениваться по близости и возможным пересечениям. Другими важными характеристиками являются ориентация, направленность и связанность.

Анализ распределения полигонов подобен анализу распределения точек, однако при оценке плотности определяют не количество полигонов на единицу площади, а относительную долю площади, занимаемой полигоном

географический информационный программный графический

ЛЕКЦИЯ 6. МОДЕЛИРОВАНИЕ ПОВЕРХНОСТЕЙ

6.1 Поверхность и цифровая модель

Основой для представления данных о земной поверхности являются цифровые модели рельефа.

Поверхности - это объекты, которые чаще всего представляются значениями высоты Z, распределенными по области, определенной координатами X и Y.

Цифровые модели рельефа (ЦМР) используют для компьютерного представления земных поверхностей.

ЦМР - средство цифрового представления рельефа земной поверхности

Построение ЦМР требует определённой формы представления исходных данных (набора координат точек X,Y,Z) и способа их структурного описания, позволяющего восстанавливать поверхность путем интерполяции или аппроксимации исходных данных.

.2 Источники данных для формирования ЦМР

Исходные данные для формирования ЦМР могут быть получены по картам - цифрованием горизонталей, по стереопарам снимков, а также в результате геодезических измерений или лазерного сканирования местности. Наиболее распространен первый способ, т.к. сбор по стереопарам снимков отличается трудоемкостью и требует специфического программного обеспечения, но в то же время позволяет обеспечить желаемую степень детальности представления земной поверхности. Лазерное сканирование перспективный современный метод, пока достаточно дорогой.

6.3 Интерполяции

Построение ЦМР требует определенной структуры данных, а исходные точки могут быть по разному распределены в пространстве. Сбор данных может осуществляться по точкам регулярной сетки, по структурным линиям рельефа или хаотично. Первичные данные с помощью тех или иных операций приводят к одному из наиболее распространенных в ГИС структур для представления поверхностей: GRID, TIN или TGRID.(Triangulated Irregular Network) - нерегулярная триангуляционная сеть, система неперекрывающихся треугольников. Вершинами треугольников являются исходные опорные точки. Рельеф в этом случае представляется многогранной поверхностью, каждая грань которой описывается либо линейной функцией (полиэдральная модель), либо полиноминальной поверхностью, коэффициенты которой определяются по значениям в вершинах граней треугольников. Для получения модели поверхности нужно соединить пары точек ребрами определенным способом, называемым триангуляцией Делоне (рис. 5).

Рис. 5. TIN модель

Триангуляция Делонев приложении к двумерному пространству формулируется следующим образом: система взаимосвязанных не перекрывающихся треугольников имеет наименьший периметр, если ни одна из вершин не попадает внутрь ни одной из окружностей, описанных вокруг образованных треугольников (рис.6).

Образовавшиеся треугольники максимально приближаются к равносторонним. Каждая из сторон образовавшихся треугольников из противолежащей вершины видна под максимальным углом из всех возможных точек соответствующей полуплоскости. Интерполяция выполняется по образованным ребрам.

Рис. 6. Триангуляция Делоне

Отличительной особенностью и преимуществом триангуляционной модели является то, что в ней нет преобразований исходных данных. С одной стороны, это не дает использовать такие модели для детального анализа, но с другой стороны, исследователь всегда знает, что в этой модели нет привнесенных ошибок, которыми грешат модели, полученные при использовании других методов интерполяции. Это самый быстрый метод интерполяции. Однако, если в ранних версиях большинства ГИС триангуляционный метод был основным, то сегодня большое распространение получили модели в виде регулярной матрицы значений высот.- модель, представляет собой регулярную матрицу значений высот, полученную при интерполяции исходных данных. Для каждой ячейки матрицы высота вычисляется на основе интерполяции. Фактически это сетка, размеры которой задаются в соответствии с требованиями точности конкретной решаемой задачи. Регулярная сетка соответствует земной поверхности, а не изображению.

Рис. 7. Плотность точек в модели GRID

(triangulated grid) - модель, сочетающая в себе элементы моделей TIN и GRID. Такие модели имеют свои преимущества, например, позволяют использовать дополнительные данные для описания сложных форм рельефа (обрывы, скальные выступы).

Восстановление поверхностей реализуется на основе интерполяции исходных данных.

Интерполяция - восстановление функции на заданном интервале по известным ее значениям конечного множества точек, принадлежащих этому интервалу.

В настоящее время известны десятки методов интерполяции поверхностей, наиболее распространенные: линейная интерполяция; метод обратных взвешенных расстояний, кригинг; сплайн-интерполяция; тренд-интерполяция.

Кригинг.Метод интерполяции, который основан на использовании методов математической статистики. В его реализации применяется идея регионализированной переменной, т.е. переменной, которая изменяется от места к месту с некоторой видимой непрерывностью, поэтому не может моделироваться только одним математическим уравнением. Поверхность рассматривается в виде трех независимых величин. Первая - тренд, характеризует изменение поверхности в определенном направлении. Далее предполагается, что имеются небольшие отклонения от общей тенденции, вроде маленьких пиков и впадин, которые являются случайными, но все же связанными друг с другом пространственно.

Случайный шум (например, валуны). С каждой из трех переменных надо оперировать в отдельности. Тренд оценивается с использованием математического уравнения, которое наиболее близко представляет общее изменение поверхности, во многом подобно поверхности тренда.

Рис. 8. Элементы кригинга: 1 - тренд, 2 - случайные, но пространственно связанные высотные колебания, 3 - случайный шум

Ожидаемое изменение высоты измеряется по вариограмме, на которой по горизонтальной оси откладывается расстояние между отсчетами, а на вертикальной - полудисперсия. Полудисперсия определяется как половина дисперсии между значениями высоты исходных точек и высот соседних точек. Затем через точки данных проводится кривая наилучшего приближения. Дисперсия в какой-то момент достигает максимума и остается постоянной (выявляется предельный радиус корреляции).

Метод обратных взвешенных расстояний.Этот метод основан на предположении, что чем ближе друг к другу находятся исходные точки, тем ближе их значения. Для точного описания топографии набор точек, по которым будет осуществляться интерполяция, необходимо выбирать в некоторой окрестности определяемой точки, так как они оказывают наибольшее влияние на ее высоту. Это достигается следующим образом. Вводится максимальный радиус поиска или количество точек, ближайших по расстоянию от начальной (определяемой) точки. Затем значению высоты в каждой выбранной точке задается вес, вычисляемый в зависимости от квадрата расстояния до определяемой точки. Этим достигается, чтобы более близкие точки вносили больший вклад в определение интерполируемой высоты по сравнению с более удаленными точками.

Тренд интерполяция. В некоторых случаях исследователя интересуют общие тенденции поверхности, которые характеризуются поверхностью тренда.

Аналогично методу обратных взвешенных расстояний для поверхности тренда используется набор точек в пределах заданной окрестности. В пределах каждой окрестности строится поверхность наилучшего приближения на основе математических уравнений, таких как полиномы или сплайны.

Поверхности тренда могут быть плоскими, показывая общую тенденцию или более сложными. Тип используемого уравнения или степень полинома определяет величину волнистости поверхности. Например, поверхность тренда первого порядка будет выглядеть как плоскость, пересекающая под некоторым углом всю поверхность. Если поверхность имеет один изгиб, то такую поверхность называют поверхностью тренда второго порядка.

Сплайн интерполяция. Возможность описания сложных поверхностей с помощью полиномов невысоких степеней определяется тем, что при сплайн интерполяции вся территория разбивается на небольшие непересекающиеся участки. Аппроксимация полиномами осуществляется раздельно для каждого участка. Обычно используют полином третьей степени - кубический сплайн. Затем строится общая функция «склейки» на всю область, с заданием условия непрерывности на границах участков и непрерывности первых и вторых частных производных, т.е. обеспечивается гладкость склеивания полиномов.

Сглаживание сплайн-функциями особенно удобно при моделировании поверхностей, осложненных разрывными нарушениями, и позволяет избежать искажения типа «краевых эффектов».

ЛЕКЦИЯ 7. ТЕХНОЛОГИЯ ПОСТРОЕНИЯ ЦИФРОВЫХ МОДЕЛЕЙ РЕЛЬЕФА

7.1 Основные процессы

Основными процессами построения ЦМР по картам являются:

) Преобразование исходных карт в растровые изображения, т.е. сканирование. При сканировании важным является выбор разрешения получаемого изображения, излишне высокое разрешение требует больших объемов памяти для хранения исходной информации, в тоже время разрешение должно обеспечить необходимую точность сбора информации, которая определяется целями формирования ЦМР.

) Монтаж растровых фрагментов. Монтаж или «сшивка» - это стыковка нескольких изображений произвольной формы в одно таким образом, чтобы границы между исходными изображениями были незаметны. При монтаже осуществляется геопривязка растровых данных. В ГИС имеются различные модули для решения этой задачи.

) Векторизация растрового изображения. Векторизация, или дигитализация горизонталей может выполняться в ручном, полуавтоматическом и автоматическом режимах. Для различных ГИС разработаны отдельные модули, реализующие эту задачу в автоматических режимах, например, Мар Еdit.

) Формирование ЦМР. ЦМР создается на основе методов интерполяции и может быть представлена в разных форматах.

) Визуализация результатов. ЦМР обеспечивает визуализацию информации о поверхностях в разных формах

.2 Требования к точности выполнения процессов

В общем случае можно сказать, что чем больше исходных точек, тем более точной будет интерполяция и тем с большей вероятностью построенная модель поверхности будет адекватно отображать земную поверхность. Однако, существует предел числу точек (дискретности), поскольку для любой поверхности излишнее количество точек обычно не улучшает существенно качество результата, но лишь увеличивает объем данных и время вычислений. В некоторых случаях избыточные данные в отдельных областях могут приводить к неравномерному представлению поверхности и, следовательно, неодинаковой точности. Другими словами, большее число точек не всегда повышает точность.

.3 Использование ЦМР

Цифровые модели рельефа (ЦМР) важны для решения целого ряда прикладных экологических задач. Для прогнозирования чрезвычайных ситуаций, например наводнений, оценки степени изменения ландшафтов и т.д.. По результатам анализа ЦМР средствами ГИС получают карты углов наклона (уклонов) местности и экспозиций склонов, формируют продольные и поперечные профили по заданному направлению, выполняют оценку зон видимости с намеченных точек обзора и др. Для отображения ЦМР используют разные формы.

ЛЕКЦИЯ 8. МЕТОДЫ И СРЕДСТВА ВИЗУАЛИЗАЦИИ

8.1 Электронные карты и атласы

Визуализация (графическое воспроизведение, отображение) - генерация изображений, в том числе и картографических, и иной графики на устройствах отображения (преимущественно на мониторе) на основе преобразования исходных цифровых данных с помощью специальных алгоритмов.

Наиболее компактными и привычным способом представления географической информации остаются карты.

Электронная карта (ЭК) - картографическое изображение, визуализированное на мониторе, на основе цифровых карт или баз данных ГИС.

Электронный атлас(ЭА) - система визуализации в форме электронных карт, электронное картографическое произведение, функционально подобное электронной карте. Поддерживаются программным обеспечением типа картографических браузеров, обеспечивающих покадровый просмотр растровых изображений карт, картографических визуализаторов, систем настольного картографирования. Помимо картографического изображения и легенд электронные атласы обычно включают обширные текстовые комментарии, табличные данные, а мультимедийные электронные атласы - анимацию, видеоряды и звуковое сопровождение.

Таблицы и графики, включающие различные характеристики объектов (атрибуты) или их соотношения, могут использоваться как самостоятельные или дополнительные к другим средствам визуализации.

Анимации применяют для показа динамических процессов, т.е. последовательный показ рисованных статичных изображений (кадров), в результате чего создается иллюзия непрерывной смены изображений.

8.2 Картографические способы отображения результатов анализа данных

Для отображения результатов анализа данных в ГИС реализованы ряд способов, которые применяют при создании тематических карт.

Способ размерных символов (значков) - анализируемые характеристики объектов отображаются специальными символами, размер которых передаёт количественную информацию, а форма и цвет качественную информацию.

Способ качественного или (количественного фона) - в этом случае группируются данные с близкими значениями и созданным группам присваиваются определенные цвета, типы символов или линий.

Точечный способ - изобразительным средством является множество точек одинакового размера, каждая из которых имеет определенное значение количественного показателя.

Столбчатые и круговые локализованные диаграммы - позволяют отобразить соотношение нескольких характеристик, при этом диаграммы имеют географическую привязку (например, в точке размещения поста наблюдений показывают соотношение загрязняющих веществ).

Способ изолиний - один из широко распространённых способов отображения различных показателей. С их помощью формируют карты изогипс (топографические и гипсометрические), карты изотерм, изобар, изокоррелят и др. С помощью изолиний выделяются территории, которые характеризуются одинаковыми свойствами (температурами, давлением, осадками, одновременностью наступления событий, равной величиной аномалий, равными скоростями тектонических движений и др.)

При этом различают две группы изолиний: истинные изолинии (характеризуют непрерывное изменение какого-либо показателя, к ним относятся горизонтали) и псевдоизолинии, отображающие данные, имеющие статистическую природу (например, дискретные значения от источников выбросов). Для представления изолиний применяют разные изобразительные средства: линии разных типов, толщины и цвета, послойная цветовая окраска фона (либо штриховка) промежутков между изолиниями.

.3 Трехмерная визуализация

Трехмерное изображение поверхности (3D-поверхность) - средство цифрового объемного представления поверхностей в виде проволочных диаграмм, при этом используются различные типы проекции, при этом изображение можно поворачивать и наклонять, используя простой графический интерфейс.

Для отображения рельефа по данным ЦМР могут быть сформированы растровые изображения.

Растровая поверхность (изображение) - формируется по Grid-модели, при этом каждому пикселу присваивается значение, пропорциональное высоте соответствующей ячейки сетки.

Теневой рельеф (аналитическая отмывка рельефа) - растровое отображение ЦМР, при формировании которого кроме высоты каждого участка сетки Grid-модели, учитывается освещенность склонов.

Реализованы возможности совмещения 3D - поверхностей с другими тематическими слоями. Для достижения реалистичности отображения объектов местности 3D-поверхности совмещаются с картографическими или ортоизображениями.

Виртуальная модель местности (ВММ) - модель местности, содержащая информацию о рельефе земной поверхности, ее спектральных яркостях и объектах, расположенных на данной территории, предназначена для интерактивной визуализации. ВММ позволяет обеспечить эффект присутствия на местности, может быть отображена в виде трехмерной статической сцены (3D-вид) или в режиме имитации полета над местностью, когда наблюдатель находится в точке с заданными координатами.

ЛЕКЦИЯ 9. ЭТАПЫ И ПРАВИЛА ПРОЕКТИРОВАНИЯ ГИС

Применение ГИС для решения различных задач, в разных организационных схемах и с разными требованиями, обуславливает разные подходы к процессу проектирования ГИС.

Выделяют пять основных этапов процесса проектирования ГИС.

Анализ системы принятия решений. Процесс начинается с определения всех типов решений, для принятия которых требуется информация. Должны быть учтены потребности каждого уровня и функциональной сферы.

Анализ информационных требований. Определяется, какой тип информации нужен для принятия каждого решения.

Агрегирование решений, т.е. группировка задач, в которых для принятия решений требуется одна и та же или значительно перекрывающаяся информация.

Проектирование процесса обработки информации. На данном этапе разрабатывается реальная система сбора, хранения, передачи и модификации информации. Должны быть учтены возможности персонала по использованию вычислительной техники.

Проектирование и контроль над системой. Важнейший этап - это создание и воплощение системы. Оценивается работоспособность системы с разных позиций, при необходимости осуществляется корректировка. Любая система будет иметь недостатки, и поэтому её необходимо делать гибкой и приспособляемой.

Геоинформационные технологии призваны автоматизировать многие трудоёмкие операции, ранее требовавшие больших временных, энергетических, психологических и других затрат от человека. Однако разные этапы технологической цепочки поддаются большей или меньшей автоматизации, что в значительной степени может зависеть от правильной постановки исходных задач.

Прежде всего, это формулирование требований к используемым информационным продуктам и выходным материалам, получаемым в результате обработки. Сюда можно отнести требования к распечатке карт, таблиц, списков, документов; к поиску документов и т.д. В результате должен быть создан документ с условным названием «Общий список входных данных».

Следующий шаг - определение приоритетов, очерёдности создания и основных параметров (территориального охвата, функционального охвата и объёма данных) создаваемой системы. Далее устанавливают требования к используемым данным с учётом максимальных возможностей их применения.

ЛЕКЦИЯ 10. КОНЦЕПЦИЯ ГИС И ТРЕБОВАНИЯ

.1 Виды ГИС

Географическая информационная система (ГИС) - это система для управления географической информацией, ее анализа и отображения. Географическая информация представляется в виде серий наборов географических данных, которые моделируют географическую среду посредством простых обобщенных структур данных. ГИС включает наборы инструментальных средств для работы с географическими данными.

Географическая информационная система поддерживает несколько видов для работы с географической информацией:

Вид Базы Геоданных: ГИС - это пространственная база данных, содержащая наборы данных, которые представляют географическую информацию в контексте общей модели данных ГИС (векторные объекты, растры, топология, сети и т.д.)

Вид Геовизуализации: ГИС - это набор интеллектуальных карт и других видов, которые показывают пространственные объекты и отношения между объектами на земной поверхности. Могут быть построены разные виды карт, и они могут использоваться как “окна в базу данных” для поддержки запросов, анализа и редактирования информации.

Вид Геообработки: ГИС - это набор инструментов для получения новых наборов географических данных из существующих наборов данных. Функции обработки пространственных данных (геообработки) извлекают информацию из существующих наборов данных, применяют к ним аналитические функции и записывают полученные результаты в новые производные наборы данных.

В программном обеспечении ESRI ® ArcGIS ® эти три вида ГИС представлены каталогом (ГИС как коллекция наборов геоданных), картой (ГИС как интеллектуальный картографический вид) и набором инструментов (ГИС как набор инструментов для обработки пространственных данных). Все они являются неотъемлемыми составляющими полноценной ГИС и в большей или меньшей степени используются во всех ГИС-приложениях.

Рис. 1. Три вида ГИС

.2 Вид базы геоданных

ГИС - это особый тип базы данных об окружающем мире - географическая база данных (база геоданных). В основе ГИС лежит структурированная база данных, которая описывает мир в географическом аспекте.

Приведем краткий обзор некоторых ключевых принципов, важных для понимания баз геоданных.

.2.1 Географическое представление

Создавая дизайн базы геоданных ГИС, пользователи определяют, как будут представляться разные пространственные объекты. Например, земельные участки обычно представляются как полигоны, улицы - как центральные линии, скважины - как точки, и т.д. Эти объекты группируются в классы объектов, в которых каждый набор имеет единое географическое представление.

Каждый набор данных ГИС дает пространственное представление какого-то аспекта окружающего мира, включая:

· Упорядоченные наборы векторных объектов (наборы точек, линий и полигонов)


· Наборы растровых данных, такие как цифровые модели рельефа или изображения


· Пространственные сети


· Топография местности и другие поверхности


· Наборы данных геодезической съемки


· Прочие типы данных, такие как адреса, названия мест, картографическая информация

ЛЕКЦИЯ 11. УПРАВЛЕНИЕ ИНФОРМАЦИЕЙ В ГИС

.1 Общие сведения

При управлении ГИС-информацией используются многие концепции и характеристики стандартной архитектуры информационных технологий, которые хорошо работают в централизованной корпоративной компьютерной среде. Например, наборы данных ГИС могут управляться в реляционных базах данных, как и прочая корпоративная информация. Для оперирования данными, хранящимися в системе управления базами данных (СУБД), используется современная логика взаимодействия приложений. Подобно другим корпоративным информационным системам, работа которых основана на транзакциях, ГИС широко используются для постоянного изменения и обновления баз географических данных. Тем не менее, технология ГИС имеет ряд важных особенностей.

.2 Данные ГИС комплексные

ГИС-данные, как правило, имеют большой объем и включают большое число крупных элементов. Например, простой запрос к базе данных для заполнения обычного коммерческого бланка выведет несколько рядов данных, в то время как для создания карты потребуется запросить из базы данных сотни или даже тысячи записей. Кроме того, объем отображаемой векторной или растровой графической информации может составлять многие мегабайты. Помимо этого, ГИС-данным присущи сложные отношения и структуры, такие как транспортные сети, топография территории и топология.

11.3 Компиляция данных ГИС является нетривиальным специализированным процессом

Для построения и поддержки графических наборов данных в ГИС требуются развитые средства редактирования. А для поддержания целостности и поведения географических векторных объектов и растров необходима их специализированная обработка на основе особых географических правил и команд. Поэтому компиляция данных в ГИС требует существенных затрат. Это одна из причин, побуждающих пользователей к совместной работе с наборами ГИС-данных.

.4 ГИС - транзакционная система

Как и в других системах управления базами данных, в базе данных ГИС происходит постоянное обновление разнообразных данных. Поэтому база данных ГИС, как и прочие базы данных, должна поддерживать подобные транзакции. При этом, у пользователей ГИС есть некоторые специальные требования к транзакциям. Одним из главных условий является возможность поддержки длинных транзакций.

Во многих случаях, существенное обновление базы данных проводится поэтапно. Например, в приложении к инженерным коммуникациям, эта работа обычно включает такие стадии, как “разработка”, “предложение”, “принятие”, “реконструкция” и “сдача”. Этот процесс в значительной степени циклический.

Техническое задание сначала составляется и передается инженеру, затем постепенно модифицируется по мере реализации отдельных этапов, и, наконец, все внесенные изменения возвращаются обратно в корпоративную базу данных.

Рабочий процесс обновления и передачи данных может длиться дни и месяцы. Однако база данных ГИС все равно должна оставаться доступной для поддержки каждодневной работы и текущих обновлений, а пользователи должны иметь возможность обращаться к своим версиям общей базы данных ГИС. Вот еще примеры рабочих процессов управления данными в ГИС:

Автономное редактирование: некоторым пользователям нужна возможность “открепления” фрагментов базы данных ГИС и их репликации (переноса) в другое место в независимую, отдельную систему. Например, для проведения редактирования в полевых условиях некоторых данных, вам необходимо забрать с собой какие-то данные, провести их редактирование и обновление на месте выполнения работ, а затем переслать внесенные изменения в основную базу данных.


Распределенные географические базы данных:

Региональная база данных может быть частичной копией соответствующего “куска” основной базы данных корпоративной ГИС. Эти базы данных должны периодически синхронизироваться для обмена внесенными в каждую из них изменениями

.5 Репликация с косвенной (нежесткой) связью

Репликация с нежесткой связью в пределах СУБД. Часто пользователи хотят синхронизировать контекст ГИС-данных между несколькими копиями базы данных (называемых репликами), когда на каждом месте ведутся свои собственные обновления локальной базы данных. Время от времени пользователи хотят перенести эти обновления из каждой реплики базы данных в другие и синхронизировать их содержание. При этом СУБД могут быть разными (например, SQL Server™, Oracle ® и IBM ® DB2 ®).

12. ГИС - РАСПРЕДЕЛЕННАЯ ИНФОРМАЦИОННАЯ СИСТЕМА

.1 Общие сведения

Сейчас в большинстве географических информационных систем данные слоев и таблиц поступают из разных организаций. Каждая организация разрабатывает более или менее весомую часть, а не все информационное наполнения своей ГИС. Обычно хотя бы некоторые слои данных поступают из внешних источников. Потребность в данных является стимулом для пользователей получать новые данные наиболее эффективными и быстрыми способами, в том числе приобретая части баз данных для своих ГИС у других ГИС-пользователей. Таким образом, управление данными ГИС осуществляется несколькими пользователями.

.2 Возможности взаимодействия

Распределенная сущность ГИС подразумевает широкие возможности для взаимодействия между многими ГИС-организациями и системами. Сотрудничество и совместная работа пользователей очень важны для ГИС.

ГИС-пользователи в своей работе давно опираются на взаимовыгодную деятельность по обмену данными и их совместному использованию. Реальным отражением этой фундаментальной потребности являются непрекращающиеся усилия в области создания ГИС стандартов. Приверженность отраслевым стандартам и общим принципам построения ГИС критически важна для успешного развития и широкого внедрения этой технологии. ГИС должна поддерживать наиболее важные стандарты и иметь возможность адаптации при появлении новых стандартов.

12.3 ГИС-сети

Многие географические наборы данных могут компилироваться и управляться как общий информационный ресурс и совместно использоваться сообществом пользователей. К тому же пользователи ГИС имеют собственное видение того, каким образом можно обеспечить обмен популярными наборами данных через Web.

Ключевые web-узлы, называемые порталами каталогов ГИС, предоставляют возможность пользователям как выкладывать собственную информацию, так и искать доступную для использования географическую информацию. В результате ГИС-системы все в большей степени подключаются к Всемирной паутине и получают новые возможности обмена и использования информации.

Это видение внедрилось в сознание людей за последнее десятилетие и нашло отражение в таких понятиях, как Национальная инфраструктура пространственных данных (NSDI) и Глобальная инфраструктура пространственных данных (GSDI). Эти концепции постоянно развиваются и постепенно внедряются, причем не только на национальном и глобальном уровнях, но также на уровне округов и муниципальных образований. В обобщенном виде эти концепции включены в понятие Инфраструктуры пространственных данных (SDI, Spatial Data Infrastructure).

ГИС-сеть по сути является одним из методов внедрения и продвижения принципов SDI. Она объединяет множество пользовательских сайтов, способствует публикации, поиску и совместному использованию географической информации посредством World Wide Web.

Географическое знание изначально является распределенным и слабо интегрированным. Вся необходимая информация редко содержится в отдельном экземпляре базы данных с собственной схемой данных. Пользователи ГИС взаимодействуют друг с другом с целью получить недостающие части имеющихся у них ГИС- данных. Посредством ГИС- сетей пользователям проще наладить контакты и обмен накопленными географическими знаниями.

В состав ГИС-сети входят три основных строительных блока:

· Порталы каталогов метаданных, где пользователи могут провести поиск и найти ГИС-информацию в соответствии с их потребностями

· ГИС-узлы, где пользователи компилируют и публи куют наборы ГИС-информации

· Пользователи ГИС, которые ведут поиск, выявляют, обращаются и используют опубликованные данные и сервисы


12.4 Каталоги ГИС-порталов

Важным компонентом ГИС-сети является каталог ГИС-портала с систематизированным реестром разнообразных мест хранения данных и информационных наборов. Часть ГИС-пользователей действует в качестве распорядителей данных, они компилируют и публикуют свои наборы данных для совместного использования в разных организациях. Они регистрируют свои информационные наборы в каталоге портала. Проводя поиск по этому каталогу, другие пользователи могут найти нужные им информационные наборы и обратиться к ним.

Портал ГИС-каталога - это Web-сайт, где ГИС пользователи могут искать и находить нужную им ГИС-информацию. Предоставляемые возможности зависят от комплекса предлагаемых сетевых сервисов ГИС-данных, картографических сервисов и сервисов метаданных. Периодически сайт портала ГИС-каталога может проводить обследование каталогов связанных с ним сайтов-участников с целью опубликования и обновления одного центрального ГИС-каталога. Таким образом, ГИС-каталог может содержать ссылки на источники данных, имеющиеся как на этом, так и на других сайтах. Предполагается, что будут созданы серии таких каталожных узлов, и на их основе сформируется общая сеть - Инфраструктура пространственных данных.


ГИС-данные и сервисы документируются в виде каталожных записей в каталоге ГИС-портала, по которому можно проводить поиск кандидатов для использования в разных ГИС-приложениях.

Одним из примеров портала ГИС-каталога является портал правительства США (Geospatial One-Stop, см. www.geodata.gov). Этот портал позволит правительственным органам всех уровней и широкой общественности проще, быстрее и с меньшими затратами обращаться к географической информации.

ЛЕКЦИЯ 13. СОСТАВ СОВРЕМЕННОЙ ПЛАТФОРМЫ ГИС

Требования к ГИС влияют на процесс разработки и внедрения программного ГИС-обеспечения. Подобно другим информационным технологиям, ГИС должна обеспечивать простоту внедрения приложений, созданных на ее основе для поддержки рабочих процессов и бизнес требований любой организации. Это достигается за счет создания базовой платформы программного обеспечения, поддерживающей разные типы наборов географических данных, развитые инструментальные средства управления данными, их редактирования, анализа и визуализации.

В этом контексте, программное обеспечение ГИС все в большей мере рассматривается в качестве ИТ-инфраструктуры, вокруг которой формируются крупные, современные многопользовательские системы. Платформа ГИС должна предоставлять все возможности, необходимые для поддержки этого широкого видения.

К ним относятся:

Географическая база данных для хранения и управления всеми географическими объектами

Основанная на Web сеть для распределенного управления географической информацией и ее совместного использования

Настольные и серверные приложения для:

1. - компиляции данных,

2. - информационных запросов,

Пространственного анализа и обработки геоданных,

4. - создания картографических продуктов,

Визуализации и исследования растровых изображений,

6. - управление данными ГИС;

Модульные программные компоненты (engines - движки) для встраивания ГИС-логики в другие приложения и специализированные пользовательские программы;

Географические информационные сервисы для многоуровневых и централизованных ГИС-систем.


ЛЕКЦИЯ 14. КРАТКИЙ ОБЗОР ПРОГРАММНЫХ СРЕДСТВ, ИСПОЛЬЗУЕМЫХ НА УКРАИНЕ

На Украине используются ГИС, как профессионального уровня, так и специализированные. Программные продукты формируются на основе модульного принципа. Обычно выделяют базовый модуль и модули расширения (или приложения). В базовом модуле содержатся функции, реализующие основные операции ГИС, в том числе программная поддержка устройств ввода-вывода, экспорт и импорт данных и т.д. Следует отметить, что программные продукты разных фирм имеют много общего, так как производители вынуждены заимствовать друг у друга те или иные технологические разработки. В настоящее время на рынке представлено около 20 хорошо известных ГИС-пакетов, которые можно отнести к полнофункциональным.

Характеризуя свойства полнофункциональных ГИС можно отметить их общие черты. Все системы работают на платформе Windows. Только некоторые из них имеют версии, работающие под управлением других операционных систем («Горизонт» - MS DOS, Unix, Linux, MC BC, Free BSD, Solaris, ИНТРОС; ПАРК - MS DOS; Arc GIS Arc Info-Solaris, Digital Unix, AIX и др.; ArcView GIS - Unix).

Все системы поддерживают обмен пространственной информацией (экспорт и импорт) со многими ГИС и САПР через основные обменные форматы.

Еще более однородными являются возможности по работе с атрибутивной информацией. Большинство систем обеспечивают работу со всеми основными СУБД через драйверы ODBC, BDE. Первой в ряду поддерживаемых или используемых СУБД стоит Oracle.

В преобладающем большинстве случаев современные полнофункциональные ГИС позволяют расширять свои возможности. Основным способом расширения возможностей является программирование на языках высокого уровня (MS Visual Basic, MS Visual C++, Borland Delphy, Borland C++ Builder) с подключением DLL и OCX-библиотек (ActiveX). Естественно имеются и исключения. Такие системы как MapInfo Professional используют Map Basic, а системы AricView GIS - Avenue.

Наиболее распространенными зарубежными системами по разным причинам являются ArcView GIS, MapInfo Professioal, MicroStation/J. Аналогичный перечень отечественных систем возглавляют ГеоГраф, Панорама (Карта 2000), ПАРК, GeoLink.

Коротко охарактеризуем наиболее распространенные программные продукты, отмечая особенности и области применения.

ArcGIS ArcInfo (разработчик фирма ESRI, США). Полнофункциональная ГИС, состоящая из двух независимо устанавливаемых программных пакетов - ArcInfo Workstation и ArcInfo Desktop.Первый состоит из трех базовых модулей: ArcMap - отображение, редактирование и анализ данных, ArcCatalog - доступ к данным и управление ими, ArcToolbox - инструмент расширенного пространственного анализа, управление проекциями и конвертацией данных. Дополнительные модули обеспечивают решение следующих задач:

Arc COGO - набор средств и функций для работы с геодезическими данными;

Arc GRID - имеет мощный набор средств анализа и управления непрерывно распределенными числовыми и качественными признаками, представляемыми в виде регулярных моделей, а также моделирования сложных процессов;

ARC TIN - предназначен для моделирования топографических поверхностей;

Arc NETWORK - для моделирования и анализа топологически связанных объектов в виде пространственных сетей, оценки и управление ресурсами, распределенными по сетям, и процессами в таких сетях.обеспечивает создание геоинформационных систем, создание и ведение земельных, лесных, геологических и других кадастров, проектирование транспортных сетей, оценку природных ресурсов.

ArcGIS ArcView (разработчик фирма ESRI, США). Настольная ГИС, которая предоставляет пользователю средства выбора и просмотра разнообразных геоданных, их редактирования, анализа и вывода (бизнес, наука, образование, управление, социология, демография, экология, транспорт, городское хозяйство).

Все продукты ArcGis могут использовать дополнительные модули для решения специализированных задач пространственного анализа:

ArcGIS Spatial Analyst - программный модуль для работы с растровыми поверхностями. Позволяет анализировать характеристики поверхности, а также интерполировать пространственно распределенные данные для визуализации и анализа процессов;

ArcGis 3D Analyst - программа для создания, визуализации и анализа трехмерных объектов и поверхностей;

ArcGIS Geostatistical Analyst - новый модуль для интерполяции поверхностей на основе статистического анализа пространственно распределенных данных;

ArcViewподдерживает реляционные СУБД, имеет развитую деловую графику (форма просмотра, табличная форма, форма диаграмм, создание макета), предусматривает создание профессионально оформленной картографической информации и разработку собственных приложений.

MapInfo Professional (разработка фирмы MapInfo Corp.США), одна из самых распространенных настольных ГИС в России. MapInfo специально спроектирован для обработки и анализа информации, имеющей адресную или пространственную привязку.

В MapInfo реализованы:

поиск географических объектов;

геометрические функции: расчеты площадей, длин, периметров, объемов, заключенных между поверхностями;

построение буферных зон вокруг любого объекта или группы объектов;

расширенный язык запросов SQL, запросы основываются на выражениях, осуществляют объединение, отображают доступные поля, позволяют делать подзапросы, объединения из нескольких таблиц и географические объединения.

компьютерный дизайн и подготовку к изданию картографических документов.

ГеоГраф (разработка Центра информационных исследований Института географии РАН, Россия). Дает возможность создавать электронные тематические атласы и композиции карт на основе слоев цифровых карт и связанных с ними таблиц атрибутивных данных. Основные возможности ГеоГраф следующие:

создание пространственных объектов в виде косметических слоев с привязкой к ним таблиц атрибутивных данных;

подсистема управления атрибутивными данными, включая подсоединение таблиц, редактирование, выборку, сортировку, запросы по образцу и т.д.

электронное тематическое картографирование и др.

Панорама (Россия) Построение и обработка цифровых и электронных карт, ведение картографической и атрибутивной баз данных.

Отдельно следует выделить профессиональные многофункциональные инструментальные ГИС, обеспечивающие возможность непосредственной обработки данных ДЗ. К ним относятся ERDAS IMAGINE, ERMapper и др.

ER Mapper (разработка ER Mapper)Обработка больших объёмов фотограмметрической информации, тематическое картографирование (геофизика, природные ресурсы, лесное хозяйство). Точность, печать карт, визуализация трёхмерного изображения, библиотека алгоритмов.

ERDAS IMAGINE (разработка Leica) - программный пакет, разработанный специально для обработки и анализа данных дистанционного зондирования, предоставляет полный набор инструментов для анализа данных из любого источника и представление результатов в различных формах - от печатных карт до трехмерных моделей. ERDAS IMAGINE построен по модульному принципу в виде базовых комплектов - IMAGINE Essential, IMAGINE Advantage и IMAGINE Professional.

В ERDAS IMAGINE реализованы:

широкие возможности по визуализации и импорту данных (поддерживает более 100 форматов);

геометрическая коррекция;

улучшающие преобразования и ГИС-анализ;

дешифрирование снимков;

инструменты обработки изображений и построение алгоритмов пространственных вычислений;

Геоинформационные системы и технологии

Геоинформационная система (ГИС) - это многофункциональная информационная система, предназначенная для сбора, обработки, моделирования и анализа пространственных данных, их отображения и использования при решении расчетных задач, подготовке и принятии решений. Основное назначение ГИС заключается в формировании знаний о Земле, отдельных территориях, местности, а также своевременном доведении необходимых и достаточных пространственных данных до пользователей с целью достижения наибольшей эффективности их работы.

Геоинформационные технологии (ГИТ) - это информационные технологии обработки географически организованной информации.
Основной особенностью ГИС, определяющей ее преимущества в сравнении с другими АИС, является наличие геоинформационной основы, т.е. цифровых карт (ЦК), дающих необходимую информацию о земной поверхности. При этом ЦК должны обеспечивать:
точную привязку, систематизацию, отбор и интеграцию всей поступаю¬щей и хранимой информации (единое адресное пространство);
комплексность и наглядность информации для принятия решений;
возможность динамического моделирования процессов и явлений;
возможность автоматизированного решения задач, связанных с анализом особенностей территории;
возможность оперативного анализа ситуации в экстренных случаях.
История развития ГИТ восходит к работам Р. Томлисона по созданию Канадской ГИС (CGIS), проводившимся в 1963-1971 гг.
В широком смысле ГИТ - это наборы данных и аналитические средства для работы с координатно привязанной информацией. ГИТ - это не информационные технологии в географии, а информационные технологии обработки географически организованной информации.
Существо ГИТ проявляется в ее способности связывать с картографическими (графическими) объектами некоторую описательную (атрибутивную) информацию (в первую очередь алфавитно-цифровую и иную графическую, звуковую и видеоинформацию). Как правило, алфавитно-цифровая информация организуется в виде таблиц реляционной БД. В простейшем случае каждому графическому объекту (а обычно выделяют точечные, линейные и площадные объекты) ставится в соответствие строка таблицы - запись в БД. Использование такой связи, собственно, и открывает столь богатые функциональные возможности перед ГИТ. Эти возможности, естественно, различаются у разных систем, но есть базовый набор функций, обычно имеющийся в любой реализации ГИТ, например, возможность ответа на вопросы "что это?" указанием объекта на кар¬те и "где это находится?" выделением на карте объектов, отобранных по некоторому условию в БД. К базовым можно также отнести ответ на вопрос "что рядом?" и его различные модификации. Исторически первое и наиболее универсальное использование ГИТ - это информационно-поисковые, справочные системы.
Таким образом, ГИТ можно рассматривать как некое расширение технологии БД для координатно привязанной информации. Но даже в этом смысле она представляет собой новый способ интеграции и структурирования информации. Это обусловлено тем, что в реальном мире большая часть информации относится к объектам, для которых важную роль играет их пространственное положение, форма и взаиморасположение, а следовательно, ГИТ во многих приложениях значительно расширяют возможности обычных СУБД, так как ГИТ более удобны и наглядны в использовании и предоставляют ДЛ свой "картографический интерфейс" для организации запроса к базе данных вместе со средствами генерации "графического" отчета. И, наконец, ГИТ добавляет обычным СУБД совершенно новую функциональность - использование пространственных взаимоотношений между объектами.
ГИТ позволяет выполнять над множествами картографических объектов операции, подобные обычным реляционным (JOIN, UNION, INTERSECTION). Операции этой группы называются оверлейными, так как используют в разных вариантах пространственное наложение одного множества объектов на другое. Фактически оверлейные операции обладают большим аналитическим потенциалом, и для многих сфер применения ГИТ являются основными, обеспечивая решение прикладных задач (землепользования, комплексной оценки территорий и другие).
ГИТ предлагает совершенно новый путь развития картографии. Прежде всего, преодолеваются основные недостатки обычных карт: статичность данных и ограниченность емкости "бумаги" как носителя информации. В последние десятилетия не только сложные специализированные карты типа экологических, но и ряд обычных бумажных карт из-за перегруженности информацией становятся "нечитаемыми". ГИТ решает эту проблему путем управления визуализацией информации. Появляется возможность выводить на экран или на твердую копию только те объекты или их множества, которые необходимы пользователю в данный момент. То есть фактически осуществляется переход от сложных комплексных карт к серии взаимоувязанных частных карт. При этом обеспечивается лучшая структурированность информации, что позволяет ее эффективно использовать (манипулирование, анализ данных и т.п.). Очевидно, что наблюдается тенденция возрастания роли ГИТ в процессе активизации информационных ресурсов, т.к. огромные массивы картографической информации эффективно переводимы в активную машиночитаемую форму только с помощью ГИТ. Кроме того, в ГИТ карта становится действительно динамическим объектом.


Последнее обусловлено следующими новыми возможностями ГИТ:
изменяемостью масштаба;
преобразованием картографических проекций:
варьированием объектным составом карты;
"опросом" через карту в режиме реального времени многочисленных БД, содержащих изменяемую информацию;
варьированием символогией, то есть способом отображения объектов (цвет, тип линии и т.п.), в том числе определение символогии через значения атрибутивных признаков объектов, что позволяет синхронизировать визуализацию с изменениями в БД.
В настоящее время широко распространено понимание того, что ГИТ - это не класс или тип программных систем, а базовая технология {umbrella technology) для многих компьютерных приложений (методов и программ), работающих с пространственной информацией.
Поскольку ЦКМ являются наборами данных сложной структуры, то их целесообразно представлять в различных форматах. Под форматом ЦКМ понимается специально введенная система классификации и кодирования данных о местности. От принятого формата ЦКМ во многом зависит оперативность решения функциональных задач (ФЗ) в системах управления военного назначения. Так, например, в случае представления рельефа местности горизонталями вычисление профиля местности занимает в тысячи раз больше времени, чем при представлении рельефа в форме матрицы высот.
Одним из важнейших и наиболее часто встречающихся типов информационной потребности в геоинформации является построение изображения участка карты на экране АРМ {визуализация карты). Но средства отображения ЦКМ на экране АРМ, наряду с приведенными выше требованиями к средствам доступа, должны отвечать еще ряду специфических требований, обусловленных необходимостью восприятия информации человеком. По существу - это следующие эргономические требования, которые целесообразно рассматривать в комплексе с другими:
по "читабельности" обстановки (т.е. обладать достаточно высокими характеристиками скорости и достоверности восприятия человеком информации оперативной обстановки на фоне карты);
по "читабельности" карты, (т.е. обладать достаточно высокими характеристиками скорости и достоверности восприятия человеком собственно картографической информации);
по "комфортности" восприятия, (т.е. форма отображения данных не должна вызывать чрезмерных напряжения человека при восприятии ин¬формации и раздражения его органов чувств в целях обеспечения требуемой продолжительности сохранения его работоспособности).
ФЗ требует для своего решения различные данные о местности. По мнению авторов, все множество этих задач по характеру использования ЦКМ можно разделить на четыре основных класса:
задачи, требующие выдачу изображения карты на устройства ввода- вывода средств автоматизации и использующие ее в качестве фона для вывода оперативной обстановки (ОКФ);
задачи, использующие информацию о характере и профилях местности (ОХПМ);
задачи, использующие информацию о дорожной сети (РДС);
задачи, использующие информацию о местоположении объекта в пределах территории государства, зоны ответственности или нейтральной территории (ОМП).
Задачами ОКФ являются все задачи, отображающие оперативную обстановку на местности в процессе диалога с пользователем. Данные задачи могут отображать "поверх карты" информацию о группировках своих войск и войск противника, зонах радиоактивного, химического, биологического заражения, сплошных разрушений, пожаров, затоплений, о направлениях и рубежах действий, районах сосредоточения и др. Общая для задач ОКФ особенность использования ЦКМ заключается в необходимости быстрого вывода изображения карты на экран АРМ в различных масштабах.
К задачам ОХПМ относятся задачи выбора места развертывания радиорелейных станций (РРС), тропосферных станций (ТРС), радиолокационных станций (PJIC), средств радиотехнической разведки, радиоэлектронной борьбы и т.д. Задачи оценки защитных свойств местности в районах развертывания пунк¬тов управления (ПУ) и узлов связи (УС), планирования огневого воздействия и т.п. также относятся к классу ОХПМ. Особенностью задач ОХПМ является необходимость определения с высокой скоростью характеристик местности в окрестностях точки с произвольными координатами.
К задачам РДС относятся, в частности, задачи определения маршрута и планирования порядка перемещения воинских формирований, оптимального пла-нирования перевозок средств снабжения или почты и некоторые другие. Данные задачи используют данные ЦКМ о дорожной сети, которые должны быть представлены в специальной форме - в виде графа, в котором все пересекающиеся дороги имеют общую вершину в перекрестках.
Задачи ОМП используют в ЦКМ данные о государственных (сухопутных и морских) и иных границах, заданные в специальной форме - в виде замкнутых контуров.
По типу информационных потребностей многие ФЗ можно отнести сразу к нескольким различным классам. В частности, задача определения оптимального района развертывания РРС может обладать свойствами классов ОХПМ и РДС, а в процессе решения для организации диалога с пользователем - свойствами класса ОКФ.

В связи с глубоким взаимопроникновением ГИС и других информационных технологий целесообразно рассмотреть взаимосвязь ГИТ с другими техноло­гиями.

Прежде всего, это графические технологии систем автоматизированного проектирования (САПР), векторных графических редакторов, и с другой сторо­ны - технологии реляционных СУБД. Большинство реализаций современных ГИТ в своей основе и представляет собой интеграцию этих двух типов инфор­мационных технологий. Следующий тип родственных информационных техно­логий - технологии обработки изображений растровых графических редакто­ров. Некоторые реализации ГИТ базируются на растровом представлении гра­фических данных. Поэтому очень многие современные ГИС общего назначения интегрируют возможности как векторного, так и растрового представления. В свою очередь, ряд технологий обработки изображений, предназначенных для работы с данными аэро- и космических съемок, очень близко примыкают к ГИТ, а иногда частично выполняют и их функции. Но обычно они к ГИТ ком­плементарны и имеют специальные средства для взаимодействия с ними (ERDAS LiveLink to ARC/INFO)

Близкородственны к ГИТ картографические (геодезические) технологии, применяющиеся при обработке данных полевых геодезических съемок и по­строении по ним карт (при построении карт по аэроснимкам с использованием фотограмметрических методик и при работах с цифровой моделью рельефа ме­стности). Здесь также наблюдается тенденция к интеграции, т.к. подавляющее число современных ГИС включают в себя средства координатной геометрии (COGO), которые позволяют непосредственно использовать данные полевых геодезических наблюдений, в том числе прямо с приборов с цифровой регист­рацией или с приемников спутниковой глобальной системы позиционирования (GPS). Фотограмметрические пакеты обычно ориентируются на совместную работу с ГИС и в ряде случаев включаются в ГИС как модули.

Сущность ГИТ проявляется в ее способности связывать с картографически­ми (графическими) объектами некоторую описательную (атрибутивную) ин­формацию (в первую очередь алфавитно-цифровую и иную графическую, зву­ковую и видеоинформацию). Как правило, алфавитно-цифровая информация организуется в виде таблиц реляционной БД. В простейшем случае каждому графическому объекту (точечному, линейному или площадному) ставится в со­ответствие строка таблицы - запись в БД. Использование такой связи и обеспе­чивает богатые функциональные возможности ГИТ. Эти возможности, естест­венно, различаются у разных систем, но есть базовый набор функций, обычно имеющийся в любой реализации ГИТ, например, возможность ответа на вопро­сы "что это?" указанием объекта на карте и "где это находится?" выделением на карте объектов, отобранных по некоторому условию в БД. К базовым можно также отнести ответ на вопрос "что рядом?" и его различные модификации. Ис­торически первое и наиболее универсальное использование ГИТ - это инфор­мационно-поисковые, справочные системы.

Таким образом, ГИТ можно рассматривать как некое расширение техноло­гии БД для координатно привязанной информации. Но даже в этом смысле она представляет собой новый способ интеграции и структурирования информации. Это обусловлено тем, что в реальном мире большая часть информации относит­ся к объектам, для которых важную роль играет их пространственное положе­ние, форма и взаиморасположение. Следовательно, ГИТ во многих приложени­ях значительно расширяют возможности обычных СУБД.

ГИТ, так же как и любая другая технология, ориентирована на решение оп­ределенного круга задач. Поскольку области применения ГИС достаточно ши­роки (военное дело, картография, география, градостроительство, организация транспортных диспетчерских служб, и т.д.), то ввиду специфики проблем, ре­шаемых в каждой из них, и особенностей, связанных с конкретным классом ре­шаемых задач и с требованиями, предъявляемыми к исходным и выходным данным, точности, техническим средствам и прочее, говорить о какой-то еди­ной ГИС-технологии достаточно проблематично.

Вместе с тем любая ГИТ включает в себя ряд операций, которые можно рас­сматривать как базовые. Они различаются в конкретных реализациях только де­талями, например, программным сервисом сканирования и постсканерной обра­ботки, возможностями геометрического преобразования исходного изображе­ния в зависимости от исходных требований и качества материала и т.д.

Поскольку приведенная модель является обобщенной, то естественно, что она либо не содержит отдельных блоков, свойственных какой-либо конкретной технологии, либо наоборот имеет в своем составе те блоки, которые в ряде слу­чаев могут отсутствовать.

По результатам анализа обобщенной модели ГИС-технологии можно выде­лить следующие базовые операции ГИТ:

  • редакционно-подготовительные работы, т. е. сбор, анализ и подготовка исходной информации (картографические данные, аэрофотоснимки, дан­ные дистанционного зондирования, результаты наземных наблюдений, статистическая информация и т.д.) для автоматизированной обработки;
  • проектирование геодезической и математической основ карт;
  • проектирование карт;
  • построение проекта цифровой тематической карты;
  • преобразование исходных данных в цифровую форму;
  • разработка макета тематического содержания карты;
  • определение методов автоматизированного построения тематического содержания;
  • формирование цифровой общегеографической основы создаваемой кар­ты;
  • создание цифровой тематической карты в соответствии с разработанным проектом;
  • получение выходной картографической продукции.

Для ввода исходной информации используются растровые сканирующие устройства, дигитайзеры, полутоновые сканеры аэрофотонегативов. Получен­ные цифровые массивы данных поступают в комплекс технических средств об­работки растровых и векторных данных, построенный на базе рабочих станций и персональных профессиональных ЭВМ. На этой же инструментальной базе осуществляются все этапы проектирования, преобразования исходной инфор­мации и создания цифровой тематической карты.

Сформированная цифровая картографическая модель поступает в комплекс технических средств формирования выходной картографической продукции, включающей в себя плоттеры, принтеры, специализированные устройства вы­вода на фотоноситель и т.д.

Исходные и обработанные цифровые данные хранятся в подсистеме архив­ного хранения данных, базирующейся в настоящее время на стримерах или на оптических дисках.

Области применения ГИТ в настоящее время чрезвычайно многообразны.

Прежде всего, это различные кадастры, системы управления распределен­ным хозяйством и инфраструктурой. Здесь развиты специализированные при­ложения, например, для систем: электрических сетей энергетической компании, кабельной сети телефонной или телевизионной компании, сложного трубопро­водного хозяйства большого химического завода, земельного кадастра, опери­рующие недвижимостью, а также такие приложения, как комплексные системы, обслуживающие многие составляющие инфраструктуры города или территории

и способные решать сложные задачи управления и планирования. Конкретные цели и задачи в таких системах очень разнообразны: от задач инвентаризации и учета, справочных систем общего пользования до налогообложения, градо- строительно-планировочных задач, планирования новых транспортных мар­шрутов и оптимизации перевозок, распределения сети ресурсов и услуг (скла­дов, магазинов, станций скорой помощи, пунктов проката автомобилей).

Еще одной развитой областью применения ГИТ является учет, изучение и использование природных ресурсов, включая сюда и охрану окружающей сре­ды. Здесь также встречаются как комплексные системы, так и специализиро­ванные: для лесного хозяйства, водного хозяйства, изучения и охраны дикой фауны и флоры и т.д. К этой области применения непосредственно примыкает использование ГИТ в геологии, как в научных, так и в практических ее задачах. Это не только задачи информационного обеспечения, но и, например, задача прогнозирования месторождений полезных ископаемых, контроль экологиче­ских последствий разработок и т.п. В геологических применениях, как и в эко­логических, велика роль приложений, требующих сложного программирования или комплексирования ГИТ со специфическими системами обработки и моде­лирования. Особенно в этом плане выделяются приложения в области нефти и газа. Здесь на стадии поисков и разведки широко используются данные сейсмо­разведки и весьма специфическое и развитое ПО по их обработке и анализу. Ве­лика потребность в комплексных решениях, увязывающих собственно геологи­ческие и иные проблемы, что невозможно решить без привлечения универсаль­ных ГИС.

Отдельно следует выделить сугубо транспортные задачи. Среди них: плани­рование новых маршрутов транспорта и оптимизация процесса перевозок с воз­можностью учета распределения ресурсов и меняющейся транспортной обста­новки (ремонты, пробки, таможенные барьеры). Особенно перспективными в стратегическом плане предполагаются навигационные системы, особенно бази­рующиеся на спутниковых системах навигации с использованием цифровой картографии.

Характерной чертой внедрения ГИТ в настоящее время является интеграция систем и баз данных в национальные, международные и глобальные информа­ционные структуры. К глобальным проектам относится, например, GDPP - "Проект глобальной базы данных", разрабатываемый в рамках Международной геосферно-биосферной программы. На национальном уровне существуют ГИС в США, Канаде, Франции, Швеции, Финляндии и других странах. В России в настоящее время разрабатываются региональные ГИС, в частности, для ведения земельного кадастра и муниципального управления, а также ведомственные ГИС, например, в Министерстве внутренних дел.

Анализ существующего на сегодняшний день опыта применения ГИТ пока­зывает, что основной формой применения ГИТ является различные по целям, сложности, составу и возможностям ГИС.

Современные ГИС представляют собой новый тип интегрированных систем, которые, с одной стороны, включают методы обработки данных существующих автоматизированных систем, а с другой - обладают спецификой в организации и обработке данных

Так как в ГИС осуществляется комплексная обработка информации (от ее сбора до хранения, обновления и предоставления), их можно рассматривать со следующих различных точек зрения:

  • ГИС как система управления - предназначена для обеспечения поддерж­ки принятия решений на основе использования картографических дан­ных;
  • ГИС как автоматизированная информационная система - объединяет ряд технологий известных информационных систем (САПР и других);
  • ГИС как геосистема - включает технологии фотометрии, картографии;
  • ГИС как система, использующая БД, - характеризуется широким набо­ром данных, собираемых с помощью разных методов и технологий;
  • ГИС как система моделирования, система предоставления информации - является развитием систем документального оборота, систем мультиме­диа и т.д.

ГИС с развитыми аналитическими возможностями близки к системам стати­стического анализа и обработки данных, причем в ряде случаев они интегриро­ваны в единые системы, например:

имплантация в современную ГИС ARC/INFO мощного статистического пакета S-PLUS;

добавление некоторых возможностей пространственной статистики и картографической визуализации в массовые статистические пакеты (SYSTATfor Windows);

развитие собственной ГИС в рамках пакета SAS - лидера среди систем обработки числовой информации.

Наиболее развитые ГИС (обычно с сильной поддержкой и растровой моде­ли), имеющие хорошие средства программирования, широко используются для моделирования природных и техногенных процессов, в том числе распростра­нения загрязнений, лесных пожаров и др. Некоторые обычные СУБД, рабо­тающие в графических средах типа MS Windows, также включают в себя про­стейшие средства картографической визуализации.

Наличие широкого спектра тенденций развития в разных областях информа­ционных технологий, интересы которых сходятся в области ГИТ, а также появ­ление универсальных пакетов широкого применения привело к тому, что гра­ницы определения ГИТ становятся менее четкими. Поэтому в настоящее время сложилось понятие полнофункциональная ГИС (full GIS).

Современная полнофункциональная ГИС - это многофункциональная ин­формационная система, предназначенная для сбора, обработки, моделирования и анализа пространственных данных, их отображения и использования при ре­шении расчетных задач, подготовке и принятии решений. Основное назначение полнофункциональной ГИС заключается в формировании знаний о Земле, от­дельных территориях, местности, а также своевременном доведении необходимых и достаточных пространственных данных до пользователей с целью дос­тижения наибольшей эффективности их работы.

Полнофункциональная ГИС должна обеспечивать:

  • двустороннюю связь между картографическими объектами и записями табличной базы данных;
  • управление визуализацией объектов, обеспечивающее выбор состава и формы отображения;
  • работу с точечными, линейными и площадными объектами;
  • ввод карт с дигитайзера или сканера и их редактирование;
  • поддержку топологических взаимоотношений между объектами и про­верку с их помощью геометрической корректности карты, в т.ч. замкну­тости площадных объектов, связности, прилегания и др.;
  • поддержку различных картографических проекций;
  • геометрические измерения на карте длины, периметра, площади и др.;построение буферных зон вокруг объектов и реализацию других овер­лейных операций;
  • создание собственных обозначений, в том числе новых типов маркерных знаков, типов линий, типов штриховок и др.;создание дополнительных элементов оформления карты, в частности подписей, рамок, легенд;
  • вывод высококачественных твердых копий карт;решение транспортных и других задач на графах, например, определение кратчайшего пути и т.п.;
  • работу с топографической поверхностью.

Помимо полнофункциональных ГИС общего назначения, выделяют специа­лизированные, которые часто имеют нечеткие границы со специализированны­ми пакетами, не являющимися в этом смысле ГИС. Например, ГИС, ориентиро­ванные на задачи планирования связи, транспортные и навигационные задачи, задачи инженерных изысканий и проектирования сооружений.

Неспециализированные ГИС более низкого уровня, чем полнофункциональ­ные системы общего назначения, обычно называют "персональными системами картографической визуализации" {desktop mapping systems, desktop GIS), иногда даже отделяя этот класс систем от собственно ГИС. Отличительной их чертой являются, прежде всего, ограниченные аналитические возможности (например, отсутствуют оверлейные операции для площадных объектов) и слабые возмож­ности ввода и редактирования картографической основы. Типичным примером такой системы является ГИС Maplnfo, в которой за счет своей меньшей сложно­сти более проста в обучении и использовании и более доступна массовому пользователю.

К настоящему времени число ГИС-пакетов, предлагаемых на рынке, исчис­ляется несколькими тысячами. Однако в большинстве это специализированные системы. Реальных полнофункциональных ГИС-пакетов общего назначения на рынке несколько десятков. В основном программное обеспечение для ГИС раз­рабатывают специализированные фирмы, только в некоторых случаях это про­дукты крупных фирм, для которых ГИС - не основной продукт (IBM, Intergraph, Computervision, Westinghouse Electric Corp., McDonnel Douglas, Siemens Nixdorf). По числу известных пакетов и по числу инсталляций преобладают ПК (MS DOS, MS Windows) и UNIX- рабочие станции.

Следует отметить, что в настоящее время полнофункциональные ГИС обще­го назначения в основном ориентированы на рабочие станции с операционной системой UNIX. На ПК, как правило, функционируют системы с редуцирован­ными возможностями. Отчасти это определяется спецификой пользователей ПК, для многих из которых простая ГИС нужна только как дополнение к обыч­ному офисному ПО. Но главная причина - в требованиях, которые мощная ГИС предъявляет к аппаратным средствам компьютера.

Топологические векторные структуры данных по своей природе сложны, а процессы их использования требуют интенсивных расчетов, существенно боль­ших, чем работа с обычной векторной графикой, в том числе и в части операций с плавающей точкой. Серьезные приложения часто требуют работы с длинными целыми и действительными числами двойной точности. Для работы с ГИС ну­жны дисплеи высокого разрешения и быстрый графический адаптер или акселе­ратор, причем требования к палитре жестче, чем в САПР. Они скорее аналогич­ны требованиям к издательским системам профессиональной полиграфии. Осо­бенно высокие требования к скорости отрисовки предъявляет типичная для ГИС (и менее типичная для САПР) задача заливки штриховками большого чис­ла замкнутых многоугольников (полигонов) сложной формы.

Серьезные проекты с использованием ГИС требуют работы с большими объемами данных, от сотен мегабайт до нескольких десятков гигабайт. Особен­но высокие требования к объемам дисковой и основной памяти, а также к быст­родействию компьютера, предъявляют ГИС с обработкой изображения в виде растровых структур, например, в задачах геометрической коррекции аэросним­ков, моделирования природных процессов и при работе с рельефом земной по­верхности. Один цветной аэроснимок высокого разрешения стандартного фор­мата, если перевести его в цифровую форму без потери "точности" (24 bit, 1200 dpi) занимает около 200 Мб. Во многих задачах регионального характера требу­ется использовать совмещенную и геометрически откорректированную мозаику из мйогих таких снимков, тем более, что признано целесообразным использо­вать растровую подложку из такой мозаики аэро- или космических снимков (digital orthophoto) в качестве базового слоя для векторных карт, т.е. фотосним­ки "впечатываются" в изображение карты. То же замечание справедливо и для работы с аэрокосмическими снимками, которые, как правило, должны обраба­тываться различными способами, чтобы избирательно выделить на них различ­ную информацию (операции различного рода фильтрации, преобразования кон­траста, операции с использованием быстрого преобразования Фурье, классифи­кационные алгоритмы, дискриминантный, кластерный и факторный анализ, а также метод главных компонент). Поэтому вместо того, чтобы хранить десятки версий обработки, что потребовало бы до сотен Гбайт на 1 кадр, рациональнее

выполнять их по требованию. Современные специализированные рабочие стан­ции справляются с такой задачей, для ПК же она еще трудна. Иногда операция с одним кадром на ПК длится несколько минут. Когда необходимо моделировать сложные природные процессы, в частности распространение загрязнения, лес­ных пожаров, либо применять данные аэрокосмических съемок, использование специализированной рабочей станции неизбежно.

Следует отметить, что скорость накопления объемов аэрокосмических (осо­бенно космических) данных пока идет в том же темпе или даже опережает тем­пы роста вычислительных мощностей ПК и рабочих станций. Действительно, ежемесячно над каждым участком Земли размером с большой город собирается не менее 800-1000 Мбайт спутниковых изображений. И если даже учесть, что половина их по условиям облачности непригодна для использования в ГИТ- приложениях, все равно это составляет огромный поток. И еще одно замечание: разрешение систем сбора дистанционной информации постоянно растет, а уве­личение геометрического разрешения на местности с 20 до 10 м увеличивает объем данных в 4 раза. Так что каждые 2-4 года компьютерная система должна в несколько раз увеличивать свою производительность, чтобы не отстать от темпов развития устройств сбора информации. Отсюда ясно, что еще длитель­ное время технической основой мощных полнофункциональных ГИС с анали­тическими функциями будут оставаться специализированные рабочие станции.

Еще одним моментом, который обуславливает необходимость обращения существенного внимания к рабочим WVZY-станциям является тот факт, что се­годня основные пакеты наиболее "серьезных" ГИС еще не переведены на ПК.

Основными направлениями использования ПК при работе с ГИС в настоя­щее время являются:

  • использование ПК в качестве терминалов совместно с рабочими стан­циями для работы с большими ГИС (ARC/INFO);
  • использование ПК в качестве станций ввода и модификации цифровых карт местности с дигитайзера или сканера (PC ARC!INFO, ArcCAD);
  • использование ПК для ГИТ-проектов с небольшим объемом единовре­менно активной информации (PC ARC/INFO, ArcCAD, ArcView);
  • использование ПК в учебных целях, для знакомства с методологией ГИТ;
  • использование ПК на начальных стадиях больших проектов, когда объем базы данных еще не вырос, не требуется полная функциональность на больших объемах и требуется еще доказывать полезность использования ГИТ и необходимость вложения серьезных средств.

Так как современные ГИС представляют собой, как правило, сложные про­граммно-информационные комплексы, разработанные специально для приме­нения в конкретных областях информационной деятельности или для решения специализированных задач, то в их состав входят:

  • операционная система;
  • ядро прикладного программного обеспечения;
  • модули тематической обработки данных;
  • интерактивный интерфейс пользователя.

К модулям тематической обработки данных относятся:

  • программное обеспечение ввода-вывода данных;
  • прикладное программное обеспечение анализа векторной и растровой информации;
  • СУБД;
  • программное обеспечение распознавания образов;
  • программное обеспечение выбора картографической проекции;
  • программное обеспечение для преобразования изображений;
  • программное обеспечение картографической генерализации;
  • программное обеспечение генерации условных знаков и т.д..

Геоинформационная система - система сбора, хранения, анализа и графической визуализации пространственных(географических) данных и связанной с ними информации о необходимых объектах. Также используется в более узком смысле - как инструмента (программного продукта), позволяющего пользователям искать, анализировать и редактировать как цифровую карту местности, так и дополнительную информацию об объектах.

"Географическая информационная система" - это совокупность аппаратно-программных средств и алгоритмических процедур, предназначенных для сбора, ввода, хранения, математико-картографического моделирования и образного представления геопространственной информации.

Геопространственные данные" означают информацию, которая идентифицирует географическое местоположение и свойства естественных или искусственно созданных объектов, а также их границ на земле. Эта информация может быть получена с помощью (помимо иных путей), дистанционного зондирования, картографирования и различных видов съемок.

Географические данные содержат четыре интегрированных компонента: местоположение,

Свойства и характеристики, пространственные отношения, время.

ГИС: география,картография,дистанционное зондирование,топография и фотограмметрия,информатика,математика и статистика.

2.Сферы использования гис.

ГИС включает в себя возможности систем управления базами данных (СУБД), редакторов растровой и векторной графики и аналитических средств и применяется в картографии, геологии, метеорологии, землеустройстве, экологии, муниципальном управлении, транспорте, экономике, обороне и многих других областях.

3.Классификация гис.

По функциональным возможностям: - полнофункциональные ГИС общего назначения;

Специализированные ГИС, ориентированные на решение конкретной задачи в какой либо предметной области;

Информационно-справочные системы для домашнего и информационно-справочного пользования. Функциональные возможности ГИС определяются также архитектурным принципом их построения:

Закрытые системы не имеют возможностей расширения, они способны выполнять только тот набор функций, который однозначно определен на момент покупки; - открытые системы отличаются легкостью приспособления, возможностями расширения, так как могут быть достроены самим пользователем при помощи специального аппарата (встроенных языков программирования).

По пространственному (территориальному) охвату ГИС подразделяются на глобальные (планетарные), общенациональные, региональные, локальные (в том числе муниципальные).

По проблемно-тематической ориентации – общегеографические, экологические и природопользовательские, отраслевые (водных ресурсов, лесопользования, геологические, туризма и т. д.).

По способу организации географических данных – векторные, растровые, векторно-растровые ГИС.

4. Структура гис.

Непозиционные (атрибутивные): описательные.

Данные (пространственные данные):

Позиционные (географические): местоположение объекта на земной поверхности.

Аппаратное обеспечение (ПК, сети, накопители, сканеры, плоттеры и т. д.).

Программное обеспечение (ПО).

Технологии (методы, порядок действий и т. д.).

ГИС - это современные геоинформационные мобильные системы, которые обладают возможностью отображать свое местоположение на карте. В основе этого важного свойства лежит использование двух технологий: геоинформационной и Если мобильное устройство имеет встроенный GPS-приемник, то с помощью такого прибора можно определить его местоположение и, следовательно, точные координаты самой ГИС. К сожалению, геоинформационные технологии и системы в русскоязычной научной литературе представлены небольшим количеством публикаций, вследствие этого практически полностью отсутствует информация об алгоритмах, лежащих в основе их функциональных возможностей.

Классификация ГИС

Подразделение геоинформационных систем происходит по территориальному принципу:

  1. Глобальная ГИС используется для предотвращения техногенных и природных катаклизмов с 1997 года. Благодаря этим данным можно за относительно короткое время спрогнозировать масштабы катастрофы, составить план ликвидации последствий, оценить нанесенный ущерб и людские потери, а также организовать гуманитарные акции.
  2. Региональная геоинформационная система разработана на муниципальном уровне. Она позволяет местным властям прогнозировать развитие определенного региона. Данная система отражает практически все важные сферы, например инвестиционные, имущественные, навигационно-информационные, правовые и др. Также стоит отметить, что благодаря использованию данных технологий появилась возможность выступать гарантом безопасности жизнедеятельности всего населения. Региональная геоинформационная система в настоящее время используется достаточно эффективно, способствуя привлечению инвестиций и стремительному росту экономики района.

Каждая из вышеописанных групп имеет определенные подвиды:

  • В глобальную ГИС входят национальные и субконтинентальные системы, как правило, с государственным статусом.
  • В региональную - локальные, субрегиональные, местные.

Сведения о данных информационных системах можно найти в специальных разделах сети, которые называются геопорталами. Они размещаются в открытом доступе для ознакомления без каких-либо ограничений.

Принцип работы

Географические информационные системы работают по принципу составления и разработки алгоритма. Именно он позволяет отображать движение объекта на карте ГИС, включая перемещение мобильного устройства в пределах локальной системы. Чтобы изобразить данную точку на чертеже местности, необходимо знать, по крайней мере, две координаты - X и Y. При отображении движения объекта на карте потребуется определить последовательность координат (Xk и Yk). Их показатели должны соответствовать разным моментам времени локальной системы ГИС. Это является основой для определения местонахождения объекта.

Данную последовательность координат можно извлечь из стандартного NMEA-файла GPS-приемника, выполнившего реальное движение на местности. Таким образом, в основе рассматриваемого здесь алгоритма лежит использование данных NMEA-файла с координатами траектории объекта по определенной территории. Необходимые данные можно получить также в результате моделирования процесса движения на основе компьютерных экспериментов.

Алгоритмы ГИС

Геоинформационные системы построены на исходных данных, которые берутся для разработки алгоритма. Как правило, это набор координат (Xk и Yk), соответствующий некоторой траектории объекта в виде NMEA-файла и цифровой карты ГИС на выбранном участке местности. Задача заключается в разработке алгоритма, отображающего движение точечного объекта. В ходе данной работы были проанализированы три алгоритма, лежащих в основе решения поставленной задачи.

  • Первый алгоритм ГИС - это анализ данных NMEA-файла с целью извлечения из него последовательности координат (Xk и Yk),
  • Второй алгоритм используется для вычисления путевого угла объекта, при этом отсчет параметра выполняется от направления на восток.
  • Третий алгоритм - для определения курса объекта относительно стран света.

Обобщенный алгоритм: общее понятие

Обобщенный алгоритм отображения движения точечного объекта на карте ГИС включает три указанных ранее алгоритма:

  • анализ данных NMEA;
  • вычисление путевого угла объекта;
  • определение курса объекта относительно стран всего земного шара.

Географические информационные системы с обобщенным алгоритмом оснащены основным управляющим элементом - таймером (Timer). Стандартная задача его заключается в том, что он позволяет программе генерировать события через определенные промежутки времени. С помощью такого объекта можно устанавливать требуемый период для выполнения набора процедур или функций. Например, для многократно выполняемого отсчета интервала времени в одну секунду надо установить следующие свойства таймера:

  • Timer.Interval = 1000;
  • Timer.Enabled = True.

В результате каждую секунду будет запускаться процедура считывания координат X, Y объекта из NMEA-файла, вследствие чего данная точка с полученными координатами отображается на карте ГИС.

Принцип работы таймера

Использование геоинформационных систем происходит следующим образом:

  1. На цифровой карте отмечаются три точки (условное обозначение - 1, 2, 3), которые соответствуют траектории движения объекта в различные моменты времени tk2, tk1, tk. Они обязательно соединены сплошной линией.
  2. Включение и выключение таймера, управляющего отображением передвижения объекта на карте, осуществляется с помощью кнопок, нажимаемых пользователем. Их значение и определенную комбинацию можно изучить по схеме.

NMEA-файл

Опишем кратко состав NMEA-файла ГИС. Это документ, записанный в формате ASCII. По сути, он представляет собой протокол для обмена информацией между GPS-приемником и другими устройствами, например ПК или КПК. Каждое сообщение NMEA начинается со знака $, за которым следует двухсимвольное обозначение устройства (для GPS-приемника — GP) и заканчивается последовательностью \r\n — символом перевода каретки и перехода на новую строку. Точность данных в уведомлении зависит от вида сообщения. Вся информация содержится в одной строке, причем поля разделяются запятыми.

Для того чтобы разобраться, как работают геоинформационные системы, вполне достаточно изучить широко используемое сообщение типа $GPRMC, которое содержит минимальный, но основной набор данных: местоположение объекта, его скорость и время.
Рассмотрим на определенном примере, какая информация в нем закодирована:

  • дата определения координат объекта — 7 января 2015 г.;
  • всемирное время UTC определения координат — 10h 54m 52s;
  • координаты объекта — 55°22.4271" с.ш. и 36°44.1610" в.д.

Подчеркнем, что координаты объекта представлены в градусах и минутах, причем последний показатель дается с точностью до четырех знаков после запятой (или точки как разделителя целой и дробной частей вещественного числа в формате USA). В дальнейшем понадобится то, что в NMEA-файле широта местоположения объекта находится в позиции после третьей запятой, а долгота — после пятой. В конце сообщения передается после символа "*" в виде двух шестнадцатеричных цифр — 6C.

Геоинформационные системы: примеры составления алгоритма

Рассмотрим алгоритм анализа NMEA-файла с целью извлечения набора координат (X и Yk), соответствующих объекта. Он составляется из нескольких последовательных шагов.

Определение координаты Y объекта

Алгоритм анализа данных NMEA

Шаг 2. Найти позицию третьей запятой в строке (q).

Шаг 3. Найти позицию четвертой запятой в строке (r).

Шаг 4. Найти, начиная с позиции q, символ десятичной точки (t).

Шаг 5. Извлечь один символ из строки, находящийся в позиции (r+1).

Шаг 6. Если этот символ равен W, то переменная NorthernHemisphere получает значение 1, иначе -1.

Шаг 7. Извлечь (г—+2) символов строки, начиная с позиции (t-2).

Шаг 8. Извлечь (t-q-3) символов строки, начиная с позиции (q+1).

Шаг 9. Преобразовать строки в вещественные числа и вычислить координату Y объекта в радианной мере.

Определение координаты X объекта

Шаг 10. Найти позицию пятой запятой в строке (n).

Шаг 11. Найти позицию шестой запятой в строке (m).

Шаг 12. Найти, начиная с позиции n, символ десятичной точки (p).

Шаг 13. Извлечь один символ из строки, находящийся в позиции (m+1).

Шаг 14. Если этот символ равен "E", то переменная EasternHemisphere получает значение 1, иначе -1.

Шаг 15. Извлечь (m-p+2) символов строки, начиная с позиции (p-2).

Шаг 16. Извлечь (p-n+2) символов строки, начиная с позиции (n+1).

Шаг 17. Преобразовать строки в вещественные числа и вычислить координату X объекта в радианной мере.

Шаг 18. Если NMEA-файл не прочитан до конца, то перейти к шагу 1, иначе перейти к шагу 19.

Шаг 19. Закончить алгоритм.

На шаге 6 и 16 данного алгоритма используются переменные NorthernHemisphere и EasternHemisphere для численного кодирования местоположения объекта на Земле. В северном (южном) полушарии переменная NorthernHemisphere принимает значение 1 (-1) соответственно, аналогично в восточном EasternHemisphere - 1 (-1).

Применение ГИС

Применение геоинформационных систем широко распространено во многих областях:

  • геологии и картографии;
  • торговли и услугах;
  • кадастре;
  • экономике и управлении;
  • обороны;
  • инженерии;
  • образовании и др.

Геоинформационная система (ГИС , также географическая информационная система ) - это интегрированные в единой информационной среде электронные пространственно-ориентированные изображения (карты, схемы, планы и т.п.) и базы данных. ГИС включают в себя возможности систем управления базами данных (СУБД), редакторов растровой и векторной графики и аналитических средств и применяются в картографии, геологии, метеорологии, землеустройстве, экологии, муниципальном управлении, транспорте, экономике, обороне и многих других областях.

По территориальному охвату различают глобальные ГИС (global GIS), субконтинентальные ГИС, национальные ГИС, зачастую имеющие статус государственных, региональные ГИС (regional GIS), субрегиональные ГИС и локальные, или местные ГИС (local GIS).

Как работает ГИС

ГИС хранит информацию о реальном мире в виде набора тематических слоев, которые объединены на основе географического положения. Этот простой, но очень гибкий подход доказал свою ценность при решении разнообразных реальных задач: для отслеживания передвижения транспортных средств и материалов, детального отображения реальной обстановки и планируемых мероприятий, моделирования глобальной циркуляции атмосферы.

Любая географическая информация содержит сведения о пространственном положении, будь то привязка к географическим или другим координатам, или ссылки на адрес, почтовый индекс, избирательный округ или округ переписи населения, идентификатор земельного или лесного участка, название дороги или километровый столб на магистрали и т.п.

послойное представление географической информации в ГИС

Ключевые преимущества ГИС

  • удобное для пользователя отображение пространственных данных
    Картографирование пространственных данных, в том числе в трехмерном измерении, наиболее удобно для восприятия, что упрощает построение запросов и их последующий анализ.
  • интеграция данных внутри организации
    Геоинформационные системы объединяют данные, накопленные в различных подразделениях компании или даже в разных областях деятельности организаций целого региона. Коллективное использование накопленных данных и их интеграция в единый информационный массив дает существенные конкурентные преимущества и повышает эффективность эксплуатации геоинформационных систем.
  • принятие обоснованных решений
    Автоматизация процесса анализа и построения отчетов о любых явлениях, связанных с пространственными данными, помогает ускорить и повысить эффективность процедуры принятия решений.
  • удобное средство для создания карт
    Геоинформационные системы оптимизируют процесс расшифровки данных космических и аэросъемок и используют уже созданные планы местности, схемы, чертежи. ГИС существенно экономят временные ресурсы, автоматизируя процесс работы с картами, и создают трехмерные модели местности.

Отраслевое использование ГИС

Возможности геоинформационных систем могут быть задействованы в самых различных областях деятельности. Вот лишь некоторые примеры использования ГИС:

административно-территориальное управление

  • городское планирование и проектирование объектов;
  • ведение кадастров инженерных коммуникаций, земельного, градостроительного, зеленых насаждений;
  • прогноз чрезвычайных ситуаций техногенно-экологического характера;
  • управление транспортными потоками и маршрутами городского транспорта;
  • построение сетей экологического мониторинга;
  • инженерно-геологическое районирование города.

телекоммуникации

  • транковая и сотовая связь, традиционные сети;
  • стратегическое планирование телекоммуникационных сетей;
  • выбор оптимального расположения антенн, ретрансляторов и др.;
  • определение маршрутов прокладки кабеля;
  • мониторинг состояния сетей;
  • оперативное диспетчерское управление.

инженерные коммуникации

  • оценка потребностей в сетях водоснабжения и канализации;
  • моделирование последствий стихийных бедствий для систем инженерных коммуникаций;
  • проектирование инженерных сетей;
  • мониторинг состояния инженерных сетей и предотвращение аварийных ситуаций.

транспорт

  • автомобильный, железнодорожный, водный, трубопроводный, авиатранспорт;
  • управление транспортной инфраструктурой и ее развитием;
  • управление парком подвижных средств и логистика;
  • управление движением, оптимизация маршрутов и анализ грузопотоков.

нефтегазовый комплекс

  • геологоразведка и полевые изыскательные работы;
  • мониторинг технологических режимов работы нефте- и газопроводов;
  • проектирование магистральных трубопроводов;
  • моделирование и анализ последствий аварийных ситуаций.

силовые ведомства

  • службы быстрого реагирования, вооруженные силы, милиция, пожарные службы;
  • планирование спасательных операций и охранных мероприятий;
  • моделирование чрезвычайных ситуаций;
  • стратегическое и тактическое планирование военных операций;
  • навигация служб быстрого реагирования и других силовых ведомств.

экология

  • оценка и мониторинг состояния природной среды;
  • моделирование экологических катастроф и анализ их последствий;
  • планирование природоохранных мероприятий.

лесное хозяйство

  • стратегическое управление лесным хозяйством;
  • управление лесозаготовками, планирование подходов к лесу и проектирование дорог;
  • ведение лесных кадастров.

сельское хозяйство

  • планирование обработки сельскохозяйственных угодий;
  • учет землевладельцев и пахотных земель;
  • оптимизация транспортировки сельскохозяйственных продуктов и минеральных удобрений.

Примеры ГИС

Google Earth

Проект компании Google, в рамках которого в сети Интернет были размещены спутниковые фотографии всей земной поверхности. Фотографии некоторых регионов имеют беспрецедентно высокое разрешение.

В отличие от других аналогичных сервисов, показывающих спутниковые снимки в обычном браузере (например, Google Maps), в данном сервисе используется специальная, загружаемая на компьютер пользователя клиентская программа Google Earth. Такой подход хотя и требует закачивания и установки программы, но зато в дальнейшем обеспечивает дополнительные возможности, трудно реализуемые с помощью веб-интерфейса. Эта программа изначально была выпущена компанией Keyhole, а затем куплена компанией Google, которая и сделала программу общедоступной. Существуют также платные версии Google Earth Plus и Google Earth Pro, отличающиеся поддержкой GPS навигации, средств презентаций и повышенным разрешением распечатки.

Возможности:

  • Google Earth автоматически подкачивает из интернета необходимые пользователю изображения и другие данные, сохраняет их в памяти компьютера и на жёстком диске для дальнейшего использования. Скачанные данные сохраняются на диске, и при последующих запусках программы закачиваются только новые данные, что позволяет существенно экономить трафик.
  • Для визуализации изображения используется трёхмерная модель всего земного шара (с учётом высоты над уровнем моря), которая отображается на экране при помощи интерфейсов DirectX или OpenGL. Именно в трёхмерности ландшафтов поверхности Земли и состоит главное отличие программы Google Earth от её предшественника Google Maps. Пользователь может легко перемещаться в любую точку планеты, управляя положением «виртуальной камеры».
  • Практически вся поверхность суши покрыта изображениями, полученными от компании DigitalGlobe, и имеющими разрешение 15 м на пиксель. Есть отдельные участки поверхности (как правило, покрывающие столицы и некоторые крупные города большинства стран мира), имеющие более подробное разрешение. Например, Москва снята с разрешением 0,6 м/пк, а многие города США - c разрешением 0,15 м/пк. Данные ландшафта имеют разрешение порядка 100 м.
  • Также имеется огромное количество дополнительных данных, которые можно подключить по желанию пользователя. Например, названия населённых пунктов, водоёмов, аэропортов, дороги, ж/д, и др. информация. Кроме этого, для многих городов имеется более подробная информация - названия улиц, магазины, заправки, гостиницы, и т. д. Имеется слой геоданных (синхронизированный через Интернет с соответствующей базой данных), на котором отображены (с пространственной привязкой) ссылки на статьи из Википедии. В России можно видеть названия улиц всех городов в центральных областях.
  • Пользователи могут создавать свои собственные метки и накладывать свои изображения поверх спутниковых (это могут быть карты, или более детальные снимки, полученные из других источников). Этими метками можно обмениваться с другими пользователями программы через форум Google Earth Community. Отправленные на этот форум метки становятся примерно через месяц видны всем пользователям Google Earth.
  • В программе есть слой «3D Здания», с трёхмерными моделями, добавляемыми разработчиками или самими пользователями, посредством сервиса 3D Warehouse. В городах России можно найти модели некоторых значимых памятников архитектуры.
  • Есть также упрощённая Java-версия программы для сотовых телефонов.
  • Имеется функция измерения расстояний.
  • В версии 4.2 появилась технология Google Sky, позволяющая рассматривать звёздное небо.
  • В версии 5.0 была введена возможность просматривать трёхмерную карту дна морей и океанов.

Технология GeoMedia является архитектурой ГИС нового поколения, позволяющая работать напрямую без импорта/экспорта одновременно с множеством пространственных данных в различных форматах. Это достигается применением специальных компонентов доступа к данным - Intergraph GeoMedia Data Server.

Позволяет визуализировать и анализировать пространственную информацию (поиск, фильтрация по условию, динамическая визуализация по условию или от изменения информации в БД, буферные зоны, статистика, анализ близости, топологический анализ (типа «находится ли объект А внутри объекта Б» и пр.) и мн. другое), подготовка карт к печати. Для конечных пользователей (не ГИС-конструкторов и администраторов) выполнение запросов по шаблону в среде настроенного рабочего сеанса. Напрямую (без конвертации и порчи в этот момент данных) подключается к следующим источникам информации (серверам и файлам в соотв. форматах): ArcGIS, MapInfo, MGE, GeoMedia (хранилище на платформе Microsoft Access, Microsoft SQL Server, Oracle Server), универсальные базы данных Oracle Server, IBM DB2 и Microsoft SQL Server, векторные карты или графика в форматах MicroStation (Bentley Systems), AutoCAD (Autodesk) и др., растровые данные (с и без геопривязки) такие, как аэрокосмические снимки и сканированные бумажные картматериалы в форматах TIFF, JPEG, CIT, RLE и пр., Веб-серверы WMS, электронные таблицы, табличные источники данных ODBC и даже ASCII тексты (в качестве полноценного хранилища, но, конечно же, форматированные). Не подходит для редактирования и/или создания данных (цифровых карт).

NASA World Wind

Полностью трёхмерный интерактивный виртуальный глобус, созданный NASA. Использует спутниковые снимки NASA и аэрофотосъёмку USGS для построения трёхмерных моделей планеты. Первоначально в программе содержатся карты с низким разрешением. При приближении некоторой рассматриваемой области на карте, изображения с высоким разрешением скачиваются с серверов NASA.

Программа позволяет выбирать масштаб, направление и угол зрения, видимые слои, производить поиск по географическим названиям. Возможно отображение названий географических объектов и политических границ.

Функция изменения масштаба реализована в World Wind как изменение высоты, с которой на поверхность смотрит камера. С большой высоты изображение выглядит плоским, однако с высоты несколько десятков километров в горах отчетливо заметен эффект перспективы, а плавная прокрутка изображения создает впечатление полета над реальной местностью.

Кроме изображения Земли, программа показывает также и поверхность Луны. Изображения получены со спутника «Клементина», запущенного в 1994 году и сделавшего за это время около 1.8 миллионов снимков. NASA World Wind позволяет наблюдать Луну почти в любой ей точке, регулируя приближение изображения. На изображении отчётливо просматривается рельеф естественного спутника, горы, кратеры и расщелины. Некоторые изображения настолько детализированы, что даёт возможность настройки вида поверхности Луны с двадцати метров.

gvSIG


Свободная геоинформационная система с открытым исходным кодом . Первая рабочая версия появилась в конце 2006 года и распространялась через интернет. Является инструментарием управления географической информацией с интуитивно понятным интерфейсом, прекрасно работающим как с растровым, так и с векторным форматом. gvSIG развивается с правительственного гранта Испании.

Программа поддерживает все необходимые функции ГИС:

  • Pабота со слоями, благодаря которой можно отображать лишь необходимые в данный момент объекты;
  • Функции масштабирования карты;
  • Поддержка сохранения необходимых ракурсов карты;
  • Автоматические расчёты расстояния между объектами и площадей областей;
  • Размещение активных объектов на карту;
  • Создание профессиональных географических карт с необходимыми элементами, которые можно впоследствии печатать.

ArcGIS

Семейство программных продуктов американской компании ESRI, одного из лидеров мирового рынка геоинформационных систем. ArcGIS построена на основе технологий COM, .NET, Java, XML, SOAP. Новейшая версия - ArcGIS 10.

ArcGIS позволяет визуализировать (представить в виде цифровой карты) большие объёмы статистической информации, имеющей географическую привязку. В среде создаются и редактируются карты всех масштабов: от планов земельных участков до карты мира.

Также в ArcGIS встроен широкий инструментарий анализа пространственной информации.

ArcGis используется в самых различных областях:

Геоинформационная система, предназначенная для геомоделирования, управления пространственными векторными и растровыми данными, обработки спутниковых снимков, создания печатной картографической продукции и многого другого.

Пакет работает со всеми современными СУБД, поддерживает топологию, трехмерную визуализацию, позволяет проводить векторизацию по различным методикам и имеет множество других возможностей, присущих дорогим коммерческим продуктам вроде ESRI ArcGIS или MapInfo. Благодаря этим качествам, GRASS широко используется в коммерческих и научных проектах (например, GRASS активно использует NASA).

Следует отметить, что GRASS GIS одна из старейших геоинформационных систем. Ее разработку инициировала лаборатория U. S. Army Construction Engineering Research в 1982 году. В 1995 исходные тексты GRASS были опубликованы под лицензией GPL.

Главнейшей особенностью GRASS является модульная структура, позволяющая формировать из отдельных функциональных единиц ГИС, оптимизированную под нужды конечного пользователя.

Основные группы модулей:

  • визуализация;
  • взаимодействие с СУБД (хранение пространственной и атрибутивной информации);
  • image processing (обработка спутниковых снимков, создание композитных снимков, геометрическая и хроматическая коррекция);
  • управление печатью;
  • работа с растровыми картами (shade-модели, масштабирование);
  • работа с векторными картами (операции пространственного анализа, атрибутивные запросы);
  • и др.

Для работы с картографическими проекциями и системами координат GRASS использует библиотеку proj, что позволяет «понимать» более 30 тыс. различных их типов. Импорт и экспорт осуществляется через библиотеку GDAL. Поддерживаются форматы Shapefile, MapInfo TAB, PostGIS, DXF, GeoTIFF, IMG и любой другой.

Источники

  1. http://tinyurl.com/2ulhlrh
  2. http://ru.wikipedia.org/wiki/ На сегодняшний день пользователям GeoMedia доступны компоненты для всех основных индустриальных форматов хранилищ цифровых картографических данных: ArcInfo, ArcView, ASCII, AutoCAD, FRAMME, GeoMedia, GML, MapInfo, MGE, MicroStation, Oracle Spatial и др., включая растровые, табличные и мультимедийные данные. При этом пользователи могут разработать собственный GeoMedia Data Server на основе шаблона для произвольного формата. Компоненты Intergraph GeoMedia Data Server позволяют на одной карте увидеть и одновременно проанализировать данные из произвольного количества источников, хранящихся в разных форматах, системах координат, имеющие различную точность. Такой подход позволяет сохранить инвестиции в уже существующие ГИС-решения, одновременно с этим перейдя на новый уровень интеграции информационных ресурсов предприятия.

    Семейство продуктов GeoMedia включает две базовые линейки продуктов - настольные и серверные, плюс дополнительные прикладные модули.

    GeoMedia является прообразом первой версии международных стандартов в области ГИС, разрабатываемых Open GIS Consortium и, одновременно, является первой реализацией этих стандартов.